来源: AINLPer公众号(每日干货分享!!)
编辑: ShuYini
校稿: ShuYini
时间: 2024-3-10
该数据集是卡内基梅隆大学研究者开发的大规模机器阅读理解数据集,专为评估机器阅读理解能力而设计。该数据集收集自中国12至18岁中学生的英语考试阅读理解部分,包含约28,000篇文章和近100,000个问题,这些问题由英语教师等人类专家生成,覆盖了广泛的主题。RACE数据集的特点在于其问题需要较高的推理能力,与现有数据集相比,推理问题的比例显著更高。此外,RACE提供了文章总结和态度分析等推理类型的细分,这在其他大规模数据集中是罕见的。
RACE数据集分为RACE-M(针对中学生)和RACE-H(针对高中生)两个子集,以区分不同难度级别的问题,并被进一步划分为训练集、开发集和测试集。数据集的统计数据显示,高中部分的文章长度和词汇量都大于初中部分,反映了更高的难度。在数据收集过程中,研究者们从中国的大型公共网站收集原始数据,并经过清洗,确保数据的质量和完整性。
相关数据集与论文获取,GZ: AINLPer公众号 回复:RACE数据集