torch.einsum
是 PyTorch 中用于执行高效张量运算的函数,基于爱因斯坦求和约定(Einstein summation convention)。它能够处理复杂的张量操作,并简化代码书写。
基本语法
torch.einsum(subscripts, *operands)
subscripts
:一个字符串,用于描述输入张量的维度如何结合。*operands
:待操作的张量。
爱因斯坦求和约定
爱因斯坦求和约定是一个简化张量运算的方式,省略了显式的求和符号。通过指定各维度的标签,可以直接描述复杂的张量运算。
语法结构
-
"nqhd,nkhd->nhqk"
: 这个字符串描述了如何对两个张量进行操作,并生成输出张量的维度。n
:批次大小(batch size)q
:查询序列长度(query length)k
:键序列长度(key length)h
:注意力头的数量(number of heads)d
:每个注意力头的维度(dimension per head)
示例代码
以下是使用 torch.einsum
计算多头注意力机制中点积相似性的示例代码:
import torch
# 定义多头注意力机制的点积计算函数
def compute_attention_scores(queries, keys):
# 计算点积相似性分数
energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])
return energy
# 示例数据
N = 1 # 批次大小
q =</