因自己论文研究需要用到LLC,但作者Jinjun Wang好像只给出了matlab的实现,自己尝试用C++,用到了OpenCV中的Mat类,但速度实在是忒慢了,每个1000*2000左右的图像需要2000多秒,这怎能容忍!谁来帮忙看下哪里可以简化加速嘞?
void LLC_coding_appr(Mat& dic,Mat& x,int knn,vector<double>& His)
{
double beta=1e-4;
int nframe=x.rows;
int nbase=dic.rows;
Mat sumx(x),sumdic(dic);
sumx=x.mul(x);
sumdic=dic.mul(dic);
Mat sum_row_x=Mat::zeros(nframe,1,CV_32F);
Mat sum_row_dic=Mat::zeros(nbase,1,CV_32F);
float x_row;
time_t time1,time2;
time1=time(NULL);
for(int i=0;i<nframe;++i)
for(int j=0;j<x.cols;++j)
sum_row_x.at<float>(i,0)+=sumx.at<float>(i,j);
for(int i=0;i<nbase;++i)
for(int j=0;j<dic.cols;++j)
sum_row_dic.at<float>(i,0)+=sumdic.at<float>(i,j);
Mat dict;
transpose(dic,dict);
//cout<<dict;
Mat x_dic=x*dict;
Mat sum_row_dict;
transpose(sum_row_dic,sum_row_dict);
Mat D=repeat(sum_row_x,1,nbase)+repeat(sum_row_dict,nframe,1)-2*x_dic;
Mat IDX=Mat::zeros(nframe,knn,CV_8U);
Mat d;
multimap<float,int> imap;
for(int i=0;i<nframe;++i)
{
d=D.rowRange(i,i+1);
for(int j=0;j<d.cols;++j)
imap.insert(make_pair(d.at<float>(0,j),j));
multimap<float,int>::iterator it=imap.begin();
for(int j=0;j<knn;++j,++it)
IDX.at<uchar>(i,j)=it->second;
}
Mat II=Mat::eye(knn,knn,CV_32F);
Mat Coeff=Mat::zeros(nframe,nbase,CV_32F);
Mat idx,z,zt,C,w,wt;
z=Mat::zeros(knn,dic.cols,CV_32F);
for(int i=0;i<nframe;++i)
{
idx=IDX.rowRange(i,i+1);
for(int j=0;j<knn;++j)
dic.row(idx.at<uchar>(0,j)).copyTo(z.row(j));
z=z-repeat(x.row(i),knn,1);
transpose(z,zt);
C=z*zt;
C=C+II*beta*trace(C).val[0];
w=C.inv()*Mat::ones(knn,1,CV_32F);
w/=sum(w).val[0];
transpose(w,wt);
for(int j=0;j<knn;++j)
Coeff.at<float>(i,idx.at<uchar>(0,j))=wt.at<float>(0,j);
}
Coeff=abs(Coeff);
for(int i=0;i<Coeff.cols;++i)
{
for(int j=0;j<x.rows;++j)
His[i]+=Coeff.at<float>(j,i);
His[i]/=Coeff.rows;
}
time2=time(NULL);
cout<<time2-time1<<endl;
}
原文章:Locality-constrained Linear Coding for Image Classification
作者给出的matlab实现:http://www.ifp.illinois.edu/~jyang29/
在网上找到使用Eigen-一种针对矩阵运算的第三方库,不需要安装,修改下附加文件目录就可以,时间比上面缩短了1/10,但还是不够快,matlab处理一幅相同的图像只需要十几秒,先简单介绍Eigen是什么鬼。
这是官网点击打开链接,按照下图配置就可以使用啦,so easy!
使用时一般包含头文件#include<Eigen/Dense>就够啦
基本操作可以见官网介绍点击打开链接,下面给出Eigen和matlab对照表,如果用过matlab就灰常简单了,没用过就可以两个东西一起学啦。
Matrix<double, 3, 3> A; // Fixed rows and cols. Same as Matrix3d.
Matrix<double, 3, Dynamic> B; // Fixed rows, dynamic cols.
Matrix<double, Dynamic, Dynamic> C; // Full dynamic. Same as MatrixXd.
Matrix<double, 3, 3, RowMajor> E; // Row major; default is column-major.
Matrix3f P, Q, R; // 3x3 float matrix.
Vector3f x, y, z; // 3x1 float matrix.
RowVector3f a, b, c; // 1x3 float matrix.
VectorXd v; // Dynamic column vector of doubles
double s;
// Basic usage
// Eigen // Matlab // comments
x.size() // length(x) // vector size
C.rows() // size(C,1) // number of rows
C.cols() // size(C,2) // number of columns
x(i) // x(i+1) // Matlab is 1-based
C(i,j) // C(i+1,j+1) //
A.resize(4, 4); // Runtime error if assertions are on.
B.resize(4, 9); // Runtime error if assertions are on.
A.resize(3, 3); // Ok; size didn't change.
B.resize(3, 9); // Ok; only dynamic cols changed.
A << 1, 2, 3, // Initialize A. The elements can also be
4, 5, 6, // matrices, which are stacked along cols
7, 8, 9; // and then the rows are stacked.
B << A, A, A; // B is three horizontally stacked A's.
A.fill(10); // Fill A with all 10's.
// Eigen // Matlab
MatrixXd::Identity(rows,cols) // eye(rows,cols)
C.setIdentity(rows,cols) // C = eye(rows,cols)
MatrixXd::Zero(rows,cols) // zeros(rows,cols)
C.setZero(rows,cols) // C = ones(rows,cols)
MatrixXd::Ones(rows,cols) // ones(rows,cols)
C.setOnes(rows,cols) // C = ones(rows,cols)
MatrixXd::Random(rows,cols) // rand(rows,cols)*2-1 // MatrixXd::Random returns uniform random numbers in (-1, 1).
C.setRandom(rows,cols) // C = rand(rows,cols)*2-1
VectorXd::LinSpaced(size,low,high) // linspace(low,high,size)'
v.setLinSpaced(size,low,high) // v = linspace(low,high,size)'
// Matrix slicing and blocks. All expressions listed here are read/write.
// Templated size versions are faster. Note that Matlab is 1-based (a size N
// vector is x(1)...x(N)).
// Eigen // Matlab
x.head(n) // x(1:n)
x.head<n>() // x(1:n)
x.tail(n) // x(end - n + 1: end)
x.tail<n>() // x(end - n + 1: end)
x.segment(i, n) // x(i+1 : i+n)
x.segment<n>(i) // x(i+1 : i+n)
P.block(i, j, rows, cols) // P(i+1 : i+rows, j+1 : j+cols)
P.block<rows, cols>(i, j) // P(i+1 : i+rows, j+1 : j+cols)
P.row(i) // P(i+1, :)
P.col(j) // P(:, j+1)
P.leftCols<cols>() // P(:, 1:cols)
P.leftCols(cols) // P(:, 1:cols)
P.middleCols<cols>(j) // P(:, j+1:j+cols)
P.middleCols(j, cols) // P(:, j+1:j+cols)
P.rightCols<cols>() // P(:, end-cols+1:end)
P.rightCols(cols) // P(:, end-cols+1:end)
P.topRows<rows>() // P(1:rows, :)
P.topRows(rows) // P(1:rows, :)
P.middleRows<rows>(i) // P(:, i+1:i+rows)
P.middleRows(i, rows) // P(:, i+1:i+rows)
P.bottomRows<rows>() // P(:, end-rows+1:end)
P.bottomRows(rows) // P(:, end-rows+1:end)
P.topLeftCorner(rows, cols) // P(1:rows, 1:cols)
P.topRightCorner(rows, cols) // P(1:rows, end-cols+1:end)
P.bottomLeftCorner(rows, cols) // P(end-rows+1:end, 1:cols)
P.bottomRightCorner(rows, cols) // P(end-rows+1:end, end-cols+1:end)
P.topLeftCorner<rows,cols>() // P(1:rows, 1:cols)
P.topRightCorner<rows,cols>() // P(1:rows, end-cols+1:end)
P.bottomLeftCorner<rows,cols>() // P(end-rows+1:end, 1:cols)
P.bottomRightCorner<rows,cols>() // P(end-rows+1:end, end-cols+1:end)
// Of particular note is Eigen's swap function which is highly optimized.
// Eigen // Matlab
R.row(i) = P.col(j); // R(i, :) = P(:, i)
R.col(j1).swap(mat1.col(j2)); // R(:, [j1 j2]) = R(:, [j2, j1])
// Views, transpose, etc; all read-write except for .adjoint().
// Eigen // Matlab
R.adjoint() // R'
R.transpose() // R.' or conj(R')
R.diagonal() // diag(R)
x.asDiagonal() // diag(x)
R.transpose().colwise().reverse(); // rot90(R)
R.conjugate() // conj(R)
// All the same as Matlab, but matlab doesn't have *= style operators.
// Matrix-vector. Matrix-matrix. Matrix-scalar.
y = M*x; R = P*Q; R = P*s;
a = b*M; R = P - Q; R = s*P;
a *= M; R = P + Q; R = P/s;
R *= Q; R = s*P;
R += Q; R *= s;
R -= Q; R /= s;
// Vectorized operations on each element independently
// Eigen // Matlab
R = P.cwiseProduct(Q); // R = P .* Q
R = P.array() * s.array();// R = P .* s
R = P.cwiseQuotient(Q); // R = P ./ Q
R = P.array() / Q.array();// R = P ./ Q
R = P.array() + s.array();// R = P + s
R = P.array() - s.array();// R = P - s
R.array() += s; // R = R + s
R.array() -= s; // R = R - s
R.array() < Q.array(); // R < Q
R.array() <= Q.array(); // R <= Q
R.cwiseInverse(); // 1 ./ P
R.array().inverse(); // 1 ./ P
R.array().sin() // sin(P)
R.array().cos() // cos(P)
R.array().pow(s) // P .^ s
R.array().square() // P .^ 2
R.array().cube() // P .^ 3
R.cwiseSqrt() // sqrt(P)
R.array().sqrt() // sqrt(P)
R.array().exp() // exp(P)
R.array().log() // log(P)
R.cwiseMax(P) // max(R, P)
R.array().max(P.array()) // max(R, P)
R.cwiseMin(P) // min(R, P)
R.array().min(P.array()) // min(R, P)
R.cwiseAbs() // abs(P)
R.array().abs() // abs(P)
R.cwiseAbs2() // abs(P.^2)
R.array().abs2() // abs(P.^2)
(R.array() < s).select(P,Q); // (R < s ? P : Q)
// Reductions.
int r, c;
// Eigen // Matlab
R.minCoeff() // min(R(:))
R.maxCoeff() // max(R(:))
s = R.minCoeff(&r, &c) // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i);
s = R.maxCoeff(&r, &c) // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i);
R.sum() // sum(R(:))
R.colwise().sum() // sum(R)
R.rowwise().sum() // sum(R, 2) or sum(R')'
R.prod() // prod(R(:))
R.colwise().prod() // prod(R)
R.rowwise().prod() // prod(R, 2) or prod(R')'
R.trace() // trace(R)
R.all() // all(R(:))
R.colwise().all() // all(R)
R.rowwise().all() // all(R, 2)
R.any() // any(R(:))
R.colwise().any() // any(R)
R.rowwise().any() // any(R, 2)
// Dot products, norms, etc.
// Eigen // Matlab
x.norm() // norm(x). Note that norm(R) doesn't work in Eigen.
x.squaredNorm() // dot(x, x) Note the equivalence is not true for complex
x.dot(y) // dot(x, y)
x.cross(y) // cross(x, y) Requires #include <Eigen/Geometry>
Type conversion
// Eigen // Matlab
A.cast<double>(); // double(A)
A.cast<float>(); // single(A)
A.cast<int>(); // int32(A)
A.real(); // real(A)
A.imag(); // imag(A)
// if the original type equals destination type, no work is done
// Note that for most operations Eigen requires all operands to have the same type:
MatrixXf F = MatrixXf::Zero(3,3);
A += F; // illegal in Eigen. In Matlab A = A+F is allowed
A += F.cast<double>(); // F converted to double and then added (generally, conversion happens on-the-fly)
// Eigen can map existing memory into Eigen matrices.
float array[3];
Vector3f::Map(array).fill(10); // create a temporary Map over array and sets entries to 10
int data[4] = {1, 2, 3, 4};
Matrix2i mat2x2(data); // copies data into mat2x2
Matrix2i::Map(data) = 2*mat2x2; // overwrite elements of data with 2*mat2x2
MatrixXi::Map(data, 2, 2) += mat2x2; // adds mat2x2 to elements of data (alternative syntax if size is not know at compile time)
// Solve Ax = b. Result stored in x. Matlab: x = A \ b.
x = A.ldlt().solve(b)); // A sym. p.s.d. #include <Eigen/Cholesky>
x = A.llt() .solve(b)); // A sym. p.d. #include <Eigen/Cholesky>
x = A.lu() .solve(b)); // Stable and fast. #include <Eigen/LU>
x = A.qr() .solve(b)); // No pivoting. #include <Eigen/QR>
x = A.svd() .solve(b)); // Stable, slowest. #include <Eigen/SVD>
// .ldlt() -> .matrixL() and .matrixD()
// .llt() -> .matrixL()
// .lu() -> .matrixL() and .matrixU()
// .qr() -> .matrixQ() and .matrixR()
// .svd() -> .matrixU(), .singularValues(), and .matrixV()
// Eigenvalue problems
// Eigen // Matlab
A.eigenvalues(); // eig(A);
EigenSolver<Matrix3d> eig(A); // [vec val] = eig(A)
eig.eigenvalues(); // diag(val)
eig.eigenvectors(); // vec
// For self-adjoint matrices use SelfAdjointEigenSolver<>
下面给出我用Eigen实现的CVPR2010-LLC(局部约束稀疏编码)
void LLC_coding_appr(MatrixXf& dic,MatrixXf& x,int knn,vector<double>& His)
{
double beta=1e-4;
int nframe=x.rows();
int nbase=dic.rows();
MatrixXf sumx(x),sumdic(dic);
sumx=sumx.cwiseProduct(x);
sumdic=sumdic.cwiseProduct(dic);
MatrixXf sum_row_x,sum_row_dic;
sum_row_x=sumx.rowwise().sum();
sum_row_dic=sumdic.rowwise().sum();
MatrixXf sum_row_dict=sum_row_dic.transpose();
MatrixXf dict=dic.transpose();
MatrixXf x_dic=x*dict;
MatrixXf a=sum_row_x.replicate(1,nbase);
MatrixXf b=sum_row_dict.replicate(nframe,1);
MatrixXf c=2*x_dic;
MatrixXf D=a+b-c;
MatrixXi IDX=MatrixXi::Zero(nframe,knn);
VectorXf d;
multimap<float,int> imap;
for(int i=0;i<nframe;++i)
{
d=D.row(i);
imap.clear();
for(int j=0;j<d.rows();++j)
imap.insert(make_pair(d(j),j));//排序部分耗时较长
multimap<float,int>::iterator it=imap.begin();
for(int j=0;j<knn;++j,++it)
IDX(i,j)=it->second;
}
//cout<<IDX<<endl;
MatrixXf II=MatrixXf::Identity(knn,knn);
MatrixXf Coeff=MatrixXf::Zero(nframe,nbase);
MatrixXf C,z;
MatrixXi idx;
MatrixXf w,wt;
z=MatrixXf::Zero(knn,dic.cols());
for(int i=0;i<nframe;++i)
{
idx=IDX.row(i);
//cout<<idx<<endl;
for(int j=0;j<knn;++j)
z.row(j)=dic.row(idx(j));
z=z-x.row(i).replicate(knn,1);
C=z*z.transpose();
C=C+II*beta*C.trace();
w=C.inverse()*MatrixXf::Ones(knn,1);
w/=w.sum();
wt=w.transpose();
for(int j=0;j<knn;++j)
Coeff(i,idx(0,j))=wt(j);
}
Coeff=Coeff.cwiseAbs();
for(int i=0;i<Coeff.cols();++i)//abs average pooling部分
{
His[i]+=Coeff.col(i).sum();
His[i]/=Coeff.rows();
}
}
实验中用的SIFT特征描述子,平均每个图像处理时间大概在150s左右,速度还是太慢。 希望有高人指点一二。