当
x
1
≠
x
2
,
y
1
≠
y
2
x_1\neq x_2,y1≠y2
x1̸=x2,y1̸=y2时,直线的斜率
k
=
y
2
−
y
1
x
2
−
x
1
k=\frac{y2-y1}{x2-x1}
k=x2−x1y2−y1
所以由点斜式可知,直线方程为
y
−
y
1
=
y
2
−
y
1
x
2
−
x
1
×
(
x
−
x
1
)
y-y_1=\frac{y2-y1}{x2-x1}×(x-x_1)
y−y1=x2−x1y2−y1×(x−x1)
推导得到
(
y
2
−
y
1
)
x
−
(
x
2
−
x
1
)
y
−
x
1
y
2
+
x
2
y
1
=
0
(y_2-y_1)x-(x_2-x_1)y-x_1y_2+x_2y_1=0
(y2−y1)x−(x2−x1)y−x1y2+x2y1=0
所以
A
=
y
2
−
y
1
A = y_2 - y_1
A=y2−y1
B
=
x
1
−
x
2
B = x_1 - x_2
B=x1−x2
C
=
x
2
∗
y
1
−
x
1
∗
y
2
C = x_2*y_1 - x_1*y_2
C=x2∗y1−x1∗y2
一般式的斜率是: − A B -\frac{A}{B} −BA