此番开源的 DaSiamRPN 代码不包含文章3.3节中的内容(参见知乎评论),同时公布的 SiamRPNBIG.model 相比论文中的模型通道翻倍,计算量增至原有的4倍。因此,速度亦不可按照原文中考量。该项目的实际内容可以看作是 SiamRPNv2。
SiamRPN 和 DaSiamRPN 基于 AlexNet,Fast R-CNN 中 RPN 基于 ZF-Net。ZF-Net 是 AlexNet 的修改版,这意味着 DaSiamRPN 是在用 RPN 做相关(cross correlation)操作。
SiamRPNBIG
SiamRPNBIG 扩大了搜索区域( 255 ⇒ 271 255\Rightarrow271 255⇒271),通道数量相比 Siamese-FC 和 SiamRPN 翻倍。
网络计算量(SiamRPNBIG)
Type/Stride | Filter Shape | Input Size | GFLOPs |
---|---|---|---|
Conv1 / s2 | 11x11x3 | 271x271x3 | 2.23 |
MaxPool1 / s2 | 3x3 | 131x131x192 | |
Conv2 | 5x5x192 | 65x65x192 | 17.03 |
MaxPool2 / s2 | 3x3 | 61x61x512 | |
Conv3 | 3x3x512 | 30x30x512 | 5.17 |
Conv4 | 3x3x768 | 28x28x768 | 4.46 |
Conv5 | 3x3x512 | 26x26x512 | 2.53 |
reg_d | 3x3x512 | 24x24x512 | 2.13 |
cls_d | 3x3x512 | 24x24x512 | 2.13 |
Correlation_reg | 4x4x512 | 22x22x512 | 0.11 |
Correlation_cls | 4x4x512 | 22x22x512 | 0.06 |
regress_adjust | 1x1x20 | 19x19x20 | 0.0003 |
total | | | 35.9 |
torch.nn.Sequential 是顺序容器。模块将按照它们在构造函数中传递的顺序添加到它中。或者,也可以传入模块的有序字典。
def __init__(self, feat_in=512, feature_out=512, anchor=5):
super(SiamRPNBIG, self).__init__()
self.anchor = anchor
self.feature_out = feature_out
self.featureExtract = nn.Sequential(
nn.Conv2d(3, 192, 11, stride=2),
nn.BatchNorm2d(192),
nn.ReLU(inplace=True),
nn.MaxPool2d(3, stride=2),
nn.Conv2d(192, 512, 5),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.MaxPool2d(3, stride=2),
nn.Conv2d(512, 768, 3),
nn.BatchNorm2d(768),
nn.ReLU(inplace=True),
nn.Conv2d(768, 768, 3),
nn.BatchNorm2d(768),
nn.ReLU(inplace=True),
nn.Conv2d(768, 512, 3),
nn.BatchNorm2d(512),
)
conv_r1
是模板分支的坐标回归,conv_cls1
是其分类;conv_r2
和conv_cls2
作用于检测分支,只是普通的3x3卷积。但self.r1_kernel
的初始化类型值得注意,实际赋值为 Tensor,意味着不是推理所需。作为对比可参考 MathsXDC/DaSiamRPNWithOfflineTraining。
regress_adjust
为1x1卷积,在论文中未有提及。
self.conv_r1 = nn.Conv2d(feat_in, feature_out*4*anchor, 3)
self.conv_r2 = nn.Conv2d(feat_in, feature_out, 3)
self.conv_cls1 = nn.Conv2d(feat_in, feature_out*2*anchor, 3)
self.conv_cls2 = nn.Conv2d(feat_in, feature_out, 3)
self.regress_adjust = nn.Conv2d(4*anchor, 4*anchor, 1)
self.r1_kernel = []
self.cls1_kernel = []
temple
由于孪生网的两个分支在跟踪推理阶段是异步运行,所以 SiamRPNBIG 专门定义了一个 temple 函数来处理模板。
调用featureExtract
提取模板z
的特征。
由z_f
得到坐标回归量r1_kernel_raw
和分类得分cls1_kernel_raw
。
kernel_size
为模板宽度。
torch.Tensor.view 返回一个新的张量,其数据与自身张量相同,但大小不同。
修改r1_kernel
和cls1_kernel
的形状:
[
f
e
a
t
u
r
e
_
o
u
t
∗
4
∗
a
n
c
h
o
r
,
k
e
r
n
e
l
_
s
i
z
e
,
k
e
r
n
e
l
_
s
i
z
e
]
⇒
[
a
n
c
h
o
r
∗
4
,
f
e
a
t
u
r
e
_
o
u
t
,
k
e
r
n
e
l
_
s
i
z
e
,
k
e
r
n
e
l
_
s
i
z
e
]
[\mathrm{feature\_out*4*anchor,kernel\_size,kernel\_size}] \Rightarrow [\mathrm{anchor*4,feature\_out,kernel\_size,kernel\_size}]
[feature_out∗4∗anchor,kernel_size,kernel_size]⇒[anchor∗4,feature_out,kernel_size,kernel_size]
模板分支作为卷积核。
如果是批量训练如何处理呢?
z_f = self.featureExtract(z)
r1_kernel_raw = self.conv_r1(z_f)
cls1_kernel_raw = self.conv_cls1(z_f)
kernel_size = r1_kernel_raw.data.size()[-1]
self.r1_kernel = r1_kernel_raw.view(self.anchor*4, self.feature_out, kernel_size, kernel_size)
self.cls1_kernel = cls1_kernel_raw.view(self.anchor*2, self.feature_out, kernel_size, kernel_size)
forward
torch.nn.Module.forward 定义每次调用时执行的计算。所有子类应该覆盖该函数。
虽然需要在此函数中定义正向传递的配方,但是之后应该调用 Module 实例而不是这个,因为前者负责运行已注册的钩子,而后者默默地忽略它们。
torch.nn.functional.conv2d 在由多个输入平面组成的输入图像上应用 2D 卷积。
如果有参数,使用 torch.nn.Module。torch.nn.functional 使用 torch.Tensor,因此需要指定反向函数。torch.nn.Module 使用torch.autograd.Variable,可以借助 torch.autograd.grad 微分。
坐标回归接regress_adjust
1x1卷积。
x_f = self.featureExtract(x)
return self.regress_adjust(F.conv2d(self.conv_r2(x_f), self.r1_kernel)), \
F.conv2d(self.conv_cls2(x_f), self.cls1_kernel)
vot_SiamRPN.py
vot_SiamRPN.py 文件为跟踪的主函数。遵从惯例,其调用 SiamRPN_init 和 SiamRPN_track 两个函数。
import vot
from vot import Rectangle
import sys
import cv2 # imread
import torch
import numpy as np
from os.path import realpath, dirname, join
from net import SiamRPNBIG
from run_SiamRPN import SiamRPN_init, SiamRPN_track
from utils import get_axis_aligned_bbox, cxy_wh_2_rect
创建网络并加载模型。
eval() 设置模块为测试模式。cuda(device=None) 将所有模型参数和缓冲区移动到GPU。torch.load 从文件加载用 torch.save() 保存的对象。load_state_dict() 将state_dict
中的参数和缓冲区复制到此模块及其后代中。
# load net
net_file = join(realpath(dirname(__file__)), 'SiamRPNBIG.model')
net = SiamRPNBIG()
net.load_state_dict(torch.load(net_file))
net.eval().cuda()
预热。运行模板和检测分支10次。
# warm up
for i in range(10):
net.temple(torch.autograd.Variable(torch.FloatTensor(1, 3, 127, 127)).cuda())
net(torch.autograd.Variable(torch.FloatTensor(1, 3, 255, 255)).cuda())
开始跟踪。
创建一个 VOT 对象。VOT 是 Python 集成 VOT 的基类。
region 将配置消息发送到客户端并接收初始化区域和第一个图像的路径。其返回值为初始化区域。
get_axis_aligned_bbox 将坐标数据转换成 RPN 的格式。
# start to track
handle = vot.VOT("polygon")
Polygon = handle.region()
cx, cy, w, h = get_axis_aligned_bbox(Polygon)
frame 函数从客户端获取帧(图像路径)。
image_file = handle.frame()
if not image_file:
sys.exit(0)
读取图像并初始化跟踪器。SiamRPN_init 构造状态结构体并运行模板分支。
target_pos, target_sz = np.array([cx, cy]), np.array([w, h])
im = cv2.imread(image_file) # HxWxC
state = SiamRPN_init(im, target_pos, target_sz, net) # init tracker
进入跟踪循环。
SiamRPN_track 运行检测分支并更新状态变量。
cxy_wh_2_rect 将坐标转换成矩形框的表示形式。
report 将跟踪结果报告给客户端。
while True:
image_file = handle.frame()
if not image_file:
break
im = cv2.imread(image_file) # HxWxC
state = SiamRPN_track(state, im) # track
res = cxy_wh_2_rect(state['target_pos'], state['target_sz'])
handle.report(Rectangle(res[0], res[1], res[2], res[3]))
SiamRPN_init
TrackerConfig 类定义了跟踪器参数。
state = dict()
p = TrackerConfig()
state['im_h'] = im.shape[0]
state['im_w'] = im.shape[1]
根据目标和输入图像的大小调整搜索区域。
if ((target_sz[0] * target_sz[1]) / float(state['im_h'] * state['im_w'])) < 0.004:
p.instance_size = 287 # small object big search region
else:
p.instance_size = 271
根据网络总步长计算出得分图大小。
generate_anchor 构造出以图像中心为原点,格式为[cx, cy, w, h]的锚点矩阵。
p.score_size = (p.instance_size - p.exemplar_size) / p.total_stride + 1
p.anchor = generate_anchor(p.total_stride, p.scales, p.ratios, p.score_size)
avg_chans = np.mean(im, axis=(0, 1))
p.context_amount * sum(target_sz)
为填充边界。wc_z
和hc_z
表示纹理填充后的宽高,s_z
为等效边长。
wc_z = target_sz[0] + p.context_amount * sum(target_sz)
hc_z = target_sz[1] + p.context_amount * sum(target_sz)
s_z = round(np.sqrt(wc_z * hc_z))
初始化原型。
get_subwindow_tracking 填充并截取出目标。
# initialize the exemplar
z_crop = get_subwindow_tracking(im, target_pos, p.exemplar_size, s_z, avg_chans)
torch.autograd.Variable 包裹张量并记录应用于它的操作。
运行 temple 函数计算模板结果。
z = Variable(z_crop.unsqueeze(0))
net.temple(z.cuda())
窗有两种。
if p.windowing == 'cosine':
window = np.outer(np.hanning(p.score_size), np.hanning(p.score_size))
elif p.windowing == 'uniform':
window = np.ones((p.score_size, p.score_size))
window = np.tile(window.flatten(), p.anchor_num)
记录并返回状态。
state['p'] = p
state['net'] = net
state['avg_chans'] = avg_chans
state['window'] = window
state['target_pos'] = target_pos
state['target_sz'] = target_sz
return state
TrackerConfig
exemplar 大小为127,搜索区域大小为271。宽高比有5种,尺度只有1种。
# These are the default hyper-params for DaSiamRPN 0.3827
windowing = 'cosine' # to penalize large displacements [cosine/uniform]
# Params from the network architecture, have to be consistent with the training
exemplar_size = 127 # input z size
instance_size = 271 # input x size (search region)
total_stride = 8
score_size = (instance_size-exemplar_size)/total_stride+1
context_amount = 0.5 # context amount for the exemplar
ratios = [0.33, 0.5, 1, 2, 3]
scales = [8, ]
anchor_num = len(ratios) * len(scales)
anchor = []
penalty_k = 0.055
window_influence = 0.42
lr = 0.295
SiamRPN_track
从state
中获取所需变量。
p = state['p']
net = state['net']
avg_chans = state['avg_chans']
window = state['window']
target_pos = state['target_pos']
target_sz = state['target_sz']
计算扩展后尺寸。
wc_z = target_sz[1] + p.context_amount * sum(target_sz)
hc_z = target_sz[0] + p.context_amount * sum(target_sz)
s_z = np.sqrt(wc_z * hc_z)
scale_z = p.exemplar_size / s_z
d_search = (p.instance_size - p.exemplar_size) / 2
pad = d_search / scale_z
s_x = s_z + 2 * pad
在前一个目标位置为搜索区域x
提取缩放的截图。
# extract scaled crops for search region x at previous target position
x_crop = Variable(get_subwindow_tracking(im, target_pos, p.instance_size, round(s_x), avg_chans).unsqueeze(0))
tracker_eval 预测出新的位置和得分。
target_pos, target_sz, score = tracker_eval(net, x_crop.cuda(), target_pos, target_sz * scale_z, window, scale_z, p)
target_pos[0] = max(0, min(state['im_w'], target_pos[0]))
target_pos[1] = max(0, min(state['im_h'], target_pos[1]))
target_sz[0] = max(10, min(state['im_w'], target_sz[0]))
target_sz[1] = max(10, min(state['im_h'], target_sz[1]))
state['target_pos'] = target_pos
state['target_sz'] = target_sz
state['score'] = score
return state
tracker_eval
运行网络的检测分支,得到坐标回归量和得分。
delta, score = net(x_crop)
torch.Tensor.permute 置换此张量的尺寸。
torch.Tensor.contiguous 返回包含与自张量相同的数据的连续张量。如果自张量是连续的,则此函数返回自张量。
torch.Tensor.numpy 将自张量作为 NumPy ndarray 返回。此张量和返回的 ndarray 共享相同的底层存储。自张量的变化将反映在 ndarray 中,反之亦然。
置换delta
,其形状由 N x 4k x H x W 变为4x(kx17x17)。score
形状为2x(kx17x17),并取其后一半结果。
delta = delta.permute(1, 2, 3, 0).contiguous().view(4, -1).data.cpu().numpy()
score = F.softmax(score.permute(1, 2, 3, 0).contiguous().view(2, -1), dim=0).data[1, :].cpu().numpy()
x
i
p
r
o
=
x
i
a
n
+
d
x
l
r
e
g
∗
w
l
a
n
y
j
p
r
o
=
y
j
a
n
+
d
y
l
r
e
g
∗
h
l
a
n
w
l
p
r
o
=
w
l
a
n
∗
e
d
w
l
h
l
p
r
o
=
h
l
a
n
∗
e
d
h
l
\begin{aligned} x_i^{pro} &= x_i^{an} + dx_l^{reg}\ast w_l^{an}\\ y_j^{pro} &= y_j^{an} + dy_l^{reg}\ast h_l^{an}\\ w_l^{pro} &= w_l^{an} \ast e^{dw_l}\\ h_l^{pro} &= h_l^{an} \ast e^{dh_l} \end{aligned}
xiproyjprowlprohlpro=xian+dxlreg∗wlan=yjan+dylreg∗hlan=wlan∗edwl=hlan∗edhl
由于p.anchor[:, 0]
和p.anchor[:, 1]
采用相对坐标,所以delta[0, :]
和delta[1, :]
表示相对前一帧的中心偏移,而delta[2, :]
和delta[3, :]
为预测宽高。变量含义不明确。
delta[0, :] = delta[0, :] * p.anchor[:, 2] + p.anchor[:, 0]
delta[1, :] = delta[1, :] * p.anchor[:, 3] + p.anchor[:, 1]
delta[2, :] = np.exp(delta[2, :]) * p.anchor[:, 2]
delta[3, :] = np.exp(delta[3, :]) * p.anchor[:, 3]
p
e
n
a
l
t
y
=
e
k
∗
max
(
r
r
′
,
r
′
r
)
∗
max
(
s
s
′
,
s
′
s
)
\mathrm{penalty} = e^{k\ast \max{(\frac{r}{r'},\frac{r'}{r})}\ast \max{(\frac{s}{s'}, \frac{s'}{s})} }
penalty=ek∗max(r′r,rr′)∗max(s′s,ss′)
(
w
+
p
)
×
(
h
+
p
)
=
s
2
p
=
w
+
h
2
\begin{aligned} (w + p) \times &(h + p) = s^2\\ p = &\frac{w + h}{2} \end{aligned}
(w+p)×p=(h+p)=s22w+h
尺寸惩罚。sz 和 sz_wh 分别计算两种输入类型的等效边长。
def change(r):
return np.maximum(r, 1./r)
def sz(w, h):
pad = (w + h) * 0.5
sz2 = (w + pad) * (h + pad)
return np.sqrt(sz2)
def sz_wh(wh):
pad = (wh[0] + wh[1]) * 0.5
sz2 = (wh[0] + pad) * (wh[1] + pad)
return np.sqrt(sz2)
# size penalty
s_c = change(sz(delta[2, :], delta[3, :]) / (sz_wh(target_sz))) # scale penalty
r_c = change((target_sz[0] / target_sz[1]) / (delta[2, :] / delta[3, :])) # ratio penalty
penalty = np.exp(-(r_c * s_c - 1.) * p.penalty_k)
pscore = penalty * score
pscore
按一定权值叠加一个窗分布值。找出最优得分的索引。
# window float
pscore = pscore * (1 - p.window_influence) + window * p.window_influence
best_pscore_id = np.argmax(pscore)
获得目标的坐标及尺寸。
delta
除以scale_z
映射到原图。
target = delta[:, best_pscore_id] / scale_z
target_sz = target_sz / scale_z
lr = penalty[best_pscore_id] * score[best_pscore_id] * p.lr
由预测坐标偏移得到目标中心,宽高进行滑动平均。
res_x = target[0] + target_pos[0]
res_y = target[1] + target_pos[1]
res_w = target_sz[0] * (1 - lr) + target[2] * lr
res_h = target_sz[1] * (1 - lr) + target[3] * lr
target_pos = np.array([res_x, res_y])
target_sz = np.array([res_w, res_h])
return target_pos, target_sz, score[best_pscore_id]
VOT
Python VOT 集成的基类。区域格式有两种。如果没有 trax,从’images.txt’中逐行读取图像路径,从’region.txt’中读取第一行区域坐标。parse_region 根据输入字符串解析出坐标。
""" Base class for Python VOT integration """
def __init__(self, region_format):
""" Constructor
Args:
region_format: Region format options
"""
assert(region_format in ['rectangle', 'polygon'])
if TRAX:
options = trax.server.ServerOptions(region_format, trax.image.PATH)
self._trax = trax.server.Server(options)
request = self._trax.wait()
assert(request.type == 'initialize')
if request.region.type == 'polygon':
self._region = Polygon([Point(x[0], x[1]) for x in request.region.points])
else:
self._region = Rectangle(request.region.x, request.region.y, request.region.width, request.region.height)
self._image = str(request.image)
self._trax.status(request.region)
else:
self._files = [x.strip('\n') for x in open('images.txt', 'r').readlines()]
self._frame = 0
self._region = convert_region(parse_region(open('region.txt', 'r').readline()), region_format)
self._result = []
region
返回区域位置。
return self._region
report
记录结果。
assert(isinstance(region, Rectangle) or isinstance(region, Polygon))
if TRAX:
if isinstance(region, Polygon):
tregion = trax.region.Polygon([(x.x, x.y) for x in region.points])
else:
tregion = trax.region.Rectangle(region.x, region.y, region.width, region.height)
self._trax.status(tregion, {"confidence" : confidence})
else:
self._result.append(region)
self._frame += 1
frame
如果帧索引超出文件列表返回None
,否则对应帧文件。
if TRAX:
if hasattr(self, "_image"):
image = str(self._image)
del self._image
return image
request = self._trax.wait()
if request.type == 'frame':
return str(request.image)
else:
return None
else:
if self._frame >= len(self._files):
return None
return self._files[self._frame]
namedtuple() 具有命名字段的元组的工厂函数。命名元组为元组中的每个位置赋予含义,并允许更可读,自我记录的代码。它们可以在使用常规元组的任何地方使用,并且它们添加了按名称而不是位置索引访问字段的功能。
parse_region
Split Strings with Multiple Delimiters?
tokens = map(float, string.split(','))
if len(tokens) == 4:
return Rectangle(tokens[0], tokens[1], tokens[2], tokens[3])
elif len(tokens) % 2 == 0 and len(tokens) > 4:
return Polygon([Point(tokens[i],tokens[i+1]) for i in xrange(0,len(tokens),2)])
return None
get_subwindow_tracking
获取图像及目标信息。
if isinstance(pos, float):
pos = [pos, pos]
sz = original_sz
im_sz = im.shape
original_sz
和sz
混用?
original_sz+1
实现四舍五入取整。
pos
是目标中心点的绝对坐标,c
为扩展背景后边界到中心的距离。
left_pad = int(max(0., 0 - context_xmin))
,即检查图像块是否超出了图片,计算超出量。
c = (original_sz+1) / 2
context_xmin = round(pos[0] - c) # floor(pos(2) - sz(2) / 2);
context_xmax = context_xmin + sz - 1
context_ymin = round(pos[1] - c) # floor(pos(1) - sz(1) / 2);
context_ymax = context_ymin + sz - 1
left_pad = int(max(0., -context_xmin))
top_pad = int(max(0., -context_ymin))
right_pad = int(max(0., context_xmax - im_sz[1] + 1))
bottom_pad = int(max(0., context_ymax - im_sz[0] + 1))
填充使得原点发生改变,获得填充后图像块的坐标。
context_xmin = context_xmin + left_pad
context_xmax = context_xmax + left_pad
context_ymin = context_ymin + top_pad
context_ymax = context_ymax + top_pad
如果需要填充,首先初始化te_im
,再进行对应位置赋值,最后赋给im_patch_original
。
# zzp: a more easy speed version
r, c, k = im.shape
if any([top_pad, bottom_pad, left_pad, right_pad]):
te_im = np.zeros((r + top_pad + bottom_pad, c + left_pad + right_pad, k), np.uint8) # 0 is better than 1 initialization
te_im[top_pad:top_pad + r, left_pad:left_pad + c, :] = im
if top_pad:
te_im[0:top_pad, left_pad:left_pad + c, :] = avg_chans
if bottom_pad:
te_im[r + top_pad:, left_pad:left_pad + c, :] = avg_chans
if left_pad:
te_im[:, 0:left_pad, :] = avg_chans
if right_pad:
te_im[:, c + left_pad:, :] = avg_chans
im_patch_original = te_im[int(context_ymin):int(context_ymax + 1), int(context_xmin):int(context_xmax + 1), :]
else:
im_patch_original = im[int(context_ymin):int(context_ymax + 1), int(context_xmin):int(context_xmax + 1), :]
如果原始图像块大小与模型输入不同则调用 OpenCV 函数。
if not np.array_equal(model_sz, original_sz):
im_patch = cv2.resize(im_patch_original, (model_sz, model_sz)) # zzp: use cv to get a better speed
else:
im_patch = im_patch_original
im_to_torch 仅转换轴,BGR 通道顺序和数值(0~255)保持不变。
return im_to_torch(im_patch) if out_mode in 'torch' else im_patch
generate_anchor
构造锚点数组。
size
似乎改成 Receptive Field 更好理解。scale
为8,需要根据输入小心设计。
anchor_num = len(ratios) * len(scales)
anchor = np.zeros((anchor_num, 4), dtype=np.float32)
size = total_stride * total_stride
count = 0
for ratio in ratios:
ws = int(np.sqrt(size / ratio))
hs = int(ws * ratio)
for scale in scales:
wws = ws * scale
hhs = hs * scale
anchor[count, 0] = 0
anchor[count, 1] = 0
anchor[count, 2] = wws
anchor[count, 3] = hhs
count += 1
对锚点组进行广播,并设置其坐标。
加上ori
偏移后,xx
和yy
以图像中心为原点。
anchor = np.tile(anchor, score_size * score_size).reshape((-1, 4))
ori = - (score_size / 2) * total_stride
xx, yy = np.meshgrid([ori + total_stride * dx for dx in range(score_size)],
[ori + total_stride * dy for dy in range(score_size)])
xx, yy = np.tile(xx.flatten(), (anchor_num, 1)).flatten(), \
np.tile(yy.flatten(), (anchor_num, 1)).flatten()
anchor[:, 0], anchor[:, 1] = xx.astype(np.float32), yy.astype(np.float32)
return anchor
参考资料:
- ECCV视觉目标跟踪之DaSiamRPN
- 2018CVPR之siameseRPN
- [深度学习] [目标跟踪] Siamese-RPN论文阅读笔记
- 【目标跟踪】SiameseRPN:High Performance Visual Tracking with Siamese Region Proposal Network
- zkisthebest/Siamese-RPN
- Understanding AlexNet
- 深度学习经典卷积神经网络之AlexNet
- 经典CNN网络 - AlexNet总结
- 卷积神经网络模型解读汇总——LeNet5,AlexNet、ZFNet、VGG16、GoogLeNet和ResNet
- faster-rcnn 之 RPN网络的结构解析
- [CVPR2017] CFNet 论文解读
- cnn模型所需的计算力(flops)是怎么计算的? - chen liu的回答
- dongfangduoshou123/DaSiamRPN-Caffe2
- MathsXDC/DaSiamRPNWithOfflineTraining