HOG 特征是深度学习兴起之前非常重要的一种特征。在早期,OpenCV 中的跟踪算法并不支持 HOG 特征,而检测模块中 HOGDescriptor 是一维的。后来,TrackerCSRT 的加入带来了 HOG 特征。然而,Object Detection 和 Deformable Part-based Models 共存令人十分困惑。二者的区别是什么?两个模块均包含 HOG 特征且 TrackerCSRT 与 Deformable Part-based Models 中的一样。经过阅读代码发现,Object Detection 中的 HOGDescriptor 是原版36维 HOG,而 Deformable Part-based Models 的是31维 FHOG。
HOGDescriptor 与 INRIA Object Detection and Localization Toolkit 中的相同。然而原始链接已经失效了,似乎可以参考 Joelgranados/Learcode。Object Detection 中提供的示例为 peopledetect.cpp,但该程序最终调用的是 HOGDescriptor::detect,而非 HOGDescriptor::compute。
HOGDescriptor 的优势为内部的 HOGCache 结构减少冗余计算,然而实现代码非常长,不利于阅读理解。测试代码 TEST(Objdetect_HOGDetector_Strict, accuracy) 是一个不错的起点,HOGDescriptorTester::compute 是简化版的 HOGDescriptor::compute。
HOGDescriptor 的计算过程分为5步:
- 计算每个像素的图像梯度 G x ( x , y ) G_x(x, y) Gx(x,y) 和 G y ( x , y ) G_y(x, y) Gy(x,y);
- 计算梯度幅值 M ( x , y ) M(x, y) M(x,y) 和方向 θ ( x , y ) \theta(x, y) θ(x,y);
- 将梯度幅度的加权投票累积到空间单元上的 N N N 个方向区间;
- 在重叠的方块内标准化单元上的对比度;
- 收集检测窗口上所有重叠方块的直方图矢量。
HOGDescriptor::compute
gcd 求最大公約數。
alignSize() 将缓冲区大小与指定的字节数对齐。
CV_INSTRUMENT_REGION();
if( winStride == Size() )
winStride = cellSize;
Size cacheStride(gcd(winStride.width, blockStride.width),
gcd(winStride.height, blockStride.height));
Size imgSize = _img.size();
size_t nwindows = locations.size();
padding.width = (int)alignSize(std::max(padding.width, 0), cacheStride.width);
padding.height = (int)alignSize(std::max(padding.height, 0), cacheStride.height);
Size paddedImgSize(imgSize.width + padding.width*2, imgSize.height + padding.height*2);
CV_OCL_RUN 会判断是否激活了 OpenCL。
在定义宏HAVE_OPENCL
时才定义 ocl_compute 函数。
CV_OCL_RUN(_img.dims() <= 2 && _img.type() == CV_8UC1 && _img.isUMat(),
ocl_compute(_img, winStride, descriptors, HOGDescriptor::DESCR_FORMAT_COL_BY_COL, blockSize,
cellSize, nbins, blockStride, winSize, (float)getWinSigma(), gammaCorrection, L2HysThreshold, signedGradient))
构造一个 HOGCache 对象。HOGCache 计算了整张图像的梯度。
HOGCache::windowsInImage 根据图像大小和窗口步长计算窗口大小。
HOGDescriptor::getDescriptorSize() 根据方向量化数以及窗口、方块和单元的大小计算特征描述符长度。
Mat img = _img.getMat();
HOGCache cache(this, img, padding, padding, nwindows == 0, cacheStride);
if( !nwindows )
nwindows = cache.windowsInImage(paddedImgSize, winStride).area();
const HOGCache::BlockData* blockData = &cache.blockData[0];
int nblocks = cache.nblocks.area();
int blockHistogramSize = cache.blockHistogramSize;
size_t dsize = getDescriptorSize();
descriptors.resize(dsize*nwindows);
对于每个窗口,拷贝cache
中的数据到descriptors
中。
如果locations
为空则调用 HOGCache::getWindow 根据图像大小和索引计算矩形窗口。
对于每个窗口的每个方块调用 HOGCache::getBlock,最终得到特征描述符descriptors
。
// for each window
for( size_t i = 0; i < nwindows; i++ )
{
float* descriptor = &descriptors[i*dsize];
Point pt0;
if( !locations.empty() )
{
pt0 = locations[i];
if( pt0.x < -padding.width || pt0.x > img.cols + padding.width - winSize.width ||
pt0.y < -padding.height || pt0.y > img.rows + padding.height - winSize.height )
continue;
}
else
{
pt0 = cache.getWindow(paddedImgSize, winStride, (int)i).tl() - Point(padding);
// CV_Assert(pt0.x % cacheStride.width == 0 && pt0.y % cacheStride.height == 0);
}
for( int j = 0; j < nblocks; j++ )
{
const HOGCache::BlockData& bj = blockData[j];
Point pt = pt0 + bj.imgOffset;
float* dst = descriptor + bj.histOfs;
const float* src = cache.getBlock(pt, dst);
if( src != dst )
memcpy(dst, src, blockHistogramSize * sizeof(float));
}
}
HOGCache
struct BlockData
{
BlockData() :
histOfs(0), imgOffset()
{ }
int histOfs;
Point imgOffset;
};
struct PixData
{
size_t gradOfs, qangleOfs;
int histOfs[4];
float histWeights[4];
float gradWeight;
};
HOGCache();
HOGCache(const HOGDescriptor* descriptor,
const Mat& img, const Size& paddingTL, const Size& paddingBR,
bool useCache, const Size& cacheStride);
virtual ~HOGCache() { }
virtual void init(const HOGDescriptor* descriptor,
const Mat& img, const Size& paddingTL, const Size& paddingBR,
bool useCache, const Size& cacheStride);
Size windowsInImage(const Size& imageSize, const Size& winStride) const;
Rect getWindow(const Size& imageSize, const Size& winStride, int idx) const;
const float* getBlock(Point pt, float* buf);
virtual void normalizeBlockHistogram(float* histogram) const;
std::vector<PixData> pixData;
std::vector<BlockData> blockData;
bool useCache;
std::vector<int> ymaxCached;
Size winSize;
Size cacheStride;
Size nblocks, ncells;
int blockHistogramSize;
int count1, count2, count4;
Point imgoffset;
Mat_<float> blockCache;
Mat_<uchar> blockCacheFlags;
Mat grad, qangle;
const HOGDescriptor* descriptor;
HOGCache::HOGCache
init(_descriptor, _img, _paddingTL, _paddingBR, _useCache, _cacheStride);
HOGCache::init
HOGDescriptor::computeGradient 由图像计算梯度的幅值和量化角度。
descriptor = _descriptor;
cacheStride = _cacheStride;
useCache = _useCache;
descriptor->computeGradient(_img, grad, qangle, _paddingTL, _paddingBR);
imgoffset = _paddingTL;
由描述符定义的尺寸计算方块的数量nblocks
、方块内单元数量ncells
。
winSize = descriptor->winSize;
Size blockSize = descriptor->blockSize;
Size blockStride = descriptor->blockStride;
Size cellSize = descriptor->cellSize;
int i, j, nbins = descriptor->nbins;
int rawBlockSize = blockSize.width*blockSize.height;
nblocks = Size((winSize.width - blockSize.width)/blockStride.width + 1,
(winSize.height - blockSize.height)/blockStride.height + 1);
ncells = Size(blockSize.width/cellSize.width, blockSize.height/cellSize.height);
blockHistogramSize = ncells.width*ncells.height*nbins;
如果使用缓存,创建blockCache
和blockCacheFlags
。
由grad
的列数和窗口高度计算cacheSize
,意味着blockCache
会缓存窗口滑动一行所覆盖的方块特征。
ymaxCached
用于记录已缓存的行。在 HOGCache::getBlock 赋值,与blockCacheFlags
搭配使用。
if( useCache )
{
Size cacheSize((grad.cols - blockSize.width)/cacheStride.width+1,
(winSize.height/cacheStride.height)+1);
blockCache.create(cacheSize.height, cacheSize.width*blockHistogramSize);
blockCacheFlags.create(cacheSize);
size_t cacheRows = blockCache.rows;
ymaxCached.resize(cacheRows);
for(size_t ii = 0; ii < cacheRows; ii++ )
ymaxCached[ii] = -1;
}
计算方块内的加窗权重。bh
和bw
是块的中心位置。_di
和_dj
是距离的平方。weights
是窗函数。
Mat_<float> weights(blockSize);
float sigma = (float)descriptor->getWinSigma();
float scale = 1.f/(sigma*sigma*2);
{
AutoBuffer<float> di(blockSize.height), dj(blockSize.width);
float* _di = di.data(), *_dj = dj.data();
float bh = blockSize.height * 0.5f, bw = blockSize.width * 0.5f;
i = 0;
#if CV_SSE2
const int a[] = { 0, 1, 2, 3 };
__m128i idx = _mm_loadu_si128((__m128i*)a);
__m128 _bw = _mm_set1_ps(bw), _bh = _mm_set1_ps(bh);
__m128i ifour = _mm_set1_epi32(4);
for (; i <= blockSize.height - 4; i += 4)
{
__m128 t = _mm_sub_ps(_mm_cvtepi32_ps(idx), _bh);
t = _mm_mul_ps(t, t);
idx = _mm_add_epi32(idx, ifour);
_mm_storeu_ps(_di + i, t);
}
#elif CV_NEON
const int a[] = { 0, 1, 2, 3 };
int32x4_t idx = vld1q_s32(a);
float32x4_t _bw = vdupq_n_f32(bw), _bh = vdupq_n_f32(bh);
int32x4_t ifour = vdupq_n_s32(4);
for (; i <= blockSize.height - 4; i += 4)
{
float32x4_t t = vsubq_f32(vcvtq_f32_s32(idx), _bh);
t = vmulq_f32(t, t);
idx = vaddq_s32(idx, ifour);
vst1q_f32(_di + i, t);
}
#endif
for ( ; i < blockSize.height; ++i)
{
_di[i] = i - bh;
_di[i] *= _di[i];
}
j = 0;
#if CV_SSE2
idx = _mm_loadu_si128((__m128i*)a);
for (; j <= blockSize.width - 4; j += 4)
{
__m128 t = _mm_sub_ps(_mm_cvtepi32_ps(idx), _bw);
t = _mm_mul_ps(t, t);
idx = _mm_add_epi32(idx, ifour);
_mm_storeu_ps(_dj + j, t);
}
#elif CV_NEON
idx = vld1q_s32(a);
for (; j <= blockSize.width - 4; j += 4)
{
float32x4_t t = vsubq_f32(vcvtq_f32_s32(idx), _bw);
t = vmulq_f32(t, t);
idx = vaddq_s32(idx, ifour);
vst1q_f32(_dj + j, t);
}
#endif
for ( ; j < blockSize.width; ++j)
{
_dj[j] = j - bw;
_dj[j] *= _dj[j];
}
for(i = 0; i < blockSize.height; i++)
for(j = 0; j < blockSize.width; j++)
weights(i,j) = std::exp(-(_di[i] + _dj[j])*scale);
}
初始化pixData
和blockData
两个查找表。blockData
为窗口中的方块数组,pixData
为方块对应的像素数组,首先申请为方块元素的3倍大小。
由于单元格之间没有重叠,因此方块直接处理每个像素。
blockData.resize(nblocks.width*nblocks.height);
pixData.resize(rawBlockSize*3);
// Initialize 2 lookup tables, pixData & blockData.
// Here is why:
//
// The detection algorithm runs in 4 nested loops (at each pyramid layer):
// loop over the windows within the input image
// loop over the blocks within each window
// loop over the cells within each block
// loop over the pixels in each cell
//
// As each of the loops runs over a 2-dimensional array,
// we could get 8(!) nested loops in total, which is very-very slow.
//
// To speed the things up, we do the following:
// 1. loop over windows is unrolled in the HOGDescriptor::{compute|detect} methods;
// inside we compute the current search window using getWindow() method.
// Yes, it involves some overhead (function call + couple of divisions),
// but it's tiny in fact.
// 2. loop over the blocks is also unrolled. Inside we use pre-computed blockData[j]
// to set up gradient and histogram pointers.
// 3. loops over cells and pixels in each cell are merged
// (since there is no overlap between cells, each pixel in the block is processed once)
// and also unrolled. Inside we use PixData[k] to access the gradient values and
// update the histogram
//
三线性插值开销较大,因此预计算方块中每个元素对应的空间权重。
histWeights
为插值权重。histOfs
记录元素的位置。
count1
、count2
和count4
分别表示方块直方图所统计的元素插值数量。由于count1
、count2
和count4
在循环的不同分支里,所以count1 + count2 + count4 = rawBlockSize
。
这里的详细内容可以参考 Fast Calculation of Histogram of Oriented Gradient Feature by Removing Redundancy in Overlapping Block。
count1 = count2 = count4 = 0;
for( j = 0; j < blockSize.width; j++ )
for( i = 0; i < blockSize.height; i++ )
{
PixData* data = 0;
float cellX = (j+0.5f)/cellSize.width - 0.5f;
float cellY = (i+0.5f)/cellSize.height - 0.5f;
int icellX0 = cvFloor(cellX);
int icellY0 = cvFloor(cellY);
int icellX1 = icellX0 + 1, icellY1 = icellY0 + 1;
cellX -= icellX0;
cellY -= icellY0;
如果像素对应的4个单元格均未超出方块,则在pixData
中记录4个单元格的直方图偏移和权重;否则记录2个或者1个。
if( (unsigned)icellX0 < (unsigned)ncells.width &&
(unsigned)icellX1 < (unsigned)ncells.width )
{
if( (unsigned)icellY0 < (unsigned)ncells.height &&
(unsigned)icellY1 < (unsigned)ncells.height )
{
data = &pixData[rawBlockSize*2 + (count4++)];
data->histOfs[0] = (icellX0*ncells.height + icellY0)*nbins;
data->histWeights[0] = (1.f - cellX)*(1.f - cellY);
data->histOfs[1] = (icellX1*ncells.height + icellY0)*nbins;
data->histWeights[1] = cellX*(1.f - cellY);
data->histOfs[2] = (icellX0*ncells.height + icellY1)*nbins;
data->histWeights[2] = (1.f - cellX)*cellY;
data->histOfs[3] = (icellX1*ncells.height + icellY1)*nbins;
data->histWeights[3] = cellX*cellY;
}
else
{
data = &pixData[rawBlockSize + (count2++)];
if( (unsigned)icellY0 < (unsigned)ncells.height )
{
icellY1 = icellY0;
cellY = 1.f - cellY;
}
data->histOfs[0] = (icellX0*ncells.height + icellY1)*nbins;
data->histWeights[0] = (1.f - cellX)*cellY;
data->histOfs[1] = (icellX1*ncells.height + icellY1)*nbins;
data->histWeights[1] = cellX*cellY;
data->histOfs[2] = data->histOfs[3] = 0;
data->histWeights[2] = data->histWeights[3] = 0;
}
}
else
{
if( (unsigned)icellX0 < (unsigned)ncells.width )
{
icellX1 = icellX0;
cellX = 1.f - cellX;
}
if( (unsigned)icellY0 < (unsigned)ncells.height &&
(unsigned)icellY1 < (unsigned)ncells.height )
{
data = &pixData[rawBlockSize + (count2++)];
data->histOfs[0] = (icellX1*ncells.height + icellY0)*nbins;
data->histWeights[0] = cellX*(1.f - cellY);
data->histOfs[1] = (icellX1*ncells.height + icellY1)*nbins;
data->histWeights[1] = cellX*cellY;
data->histOfs[2] = data->histOfs[3] = 0;
data->histWeights[2] = data->histWeights[3] = 0;
}
else
{
data = &pixData[count1++];
if( (unsigned)icellY0 < (unsigned)ncells.height )
{
icellY1 = icellY0;
cellY = 1.f - cellY;
}
data->histOfs[0] = (icellX1*ncells.height + icellY1)*nbins;
data->histWeights[0] = cellX*cellY;
data->histOfs[1] = data->histOfs[2] = data->histOfs[3] = 0;
data->histWeights[1] = data->histWeights[2] = data->histWeights[3] = 0;
}
}
data->gradOfs = (grad.cols*i + j)*2;
data->qangleOfs = (qangle.cols*i + j)*2;
data->gradWeight = weights(i,j);
}
重组pixData
。
assert( count1 + count2 + count4 == rawBlockSize );
// defragment pixData
for( j = 0; j < count2; j++ )
pixData[j + count1] = pixData[j + rawBlockSize];
for( j = 0; j < count4; j++ )
pixData[j + count1 + count2] = pixData[j + rawBlockSize*2];
count2 += count1;
count4 += count2;
初始化blockData
,记录每个方块特征的偏移以及对应图像上的偏移。
// initialize blockData
for( j = 0; j < nblocks.width; j++ )
for( i = 0; i < nblocks.height; i++ )
{
BlockData& data = blockData[j*nblocks.height + i];
data.histOfs = (j*nblocks.height + i)*blockHistogramSize;
data.imgOffset = Point(j*blockStride.width,i*blockStride.height);
}
HOGDescriptor::computeGradient
Mat::locateROI 在父矩阵中找到矩阵头。使用 Mat::row、Mat::col、Mat::rowRange、 Mat::colRange 等从矩阵中提取子矩阵后,生成的子矩阵仅指向原始大矩阵的一部分。然而,每个子矩阵包含有助于重建原始矩阵大小的信息以及提取的子矩阵在原始矩阵内的位置(由datastart
和dataend
字段表示)。
CV_INSTRUMENT_REGION();
CV_Assert( img.type() == CV_8U || img.type() == CV_8UC3 );
Size gradsize(img.cols + paddingTL.width + paddingBR.width,
img.rows + paddingTL.height + paddingBR.height);
grad.create(gradsize, CV_32FC2); // <magnitude*(1-alpha), magnitude*alpha>
qangle.create(gradsize, CV_8UC2); // [0..nbins-1] - quantized gradient orientation
Size wholeSize;
Point roiofs;
img.locateROI(wholeSize, roiofs);
int i, x, y;
int cn = img.channels();
创建_lut
数组。
Mat_<float> _lut(1, 256);
const float* const lut = &_lut(0,0);
#if CV_SSE2
const int indices[] = { 0, 1, 2, 3 };
__m128i idx = _mm_loadu_si128((const __m128i*)indices);
__m128i ifour = _mm_set1_epi32(4);
float* const _data = &_lut(0, 0);
if( gammaCorrection )
for( i = 0; i < 256; i += 4 )
{
_mm_storeu_ps(_data + i, _mm_sqrt_ps(_mm_cvtepi32_ps(idx)));
idx = _mm_add_epi32(idx, ifour);
}
else
for( i = 0; i < 256; i += 4 )
{
_mm_storeu_ps(_data + i, _mm_cvtepi32_ps(idx));
idx = _mm_add_epi32(idx, ifour);
}
#elif CV_NEON
const int indices[] = { 0, 1, 2, 3 };
uint32x4_t idx = *(uint32x4_t*)indices;
uint32x4_t ifour = vdupq_n_u32(4);
float* const _data = &_lut(0, 0);
if( gammaCorrection )
for( i = 0; i < 256; i++ )
_lut(0,i) = std::sqrt((float)i);
else
for( i = 0; i < 256; i += 4 )
{
vst1q_f32(_data + i, vcvtq_f32_u32(idx));
idx = vaddq_u32 (idx, ifour);
}
#else
if( gammaCorrection )
for( i = 0; i < 256; i++ )
_lut(0,i) = std::sqrt((float)i);
else
for( i = 0; i < 256; i++ )
_lut(0,i) = (float)i;
#endif
AutoBuffer 自动分配的缓冲区类。该类用于函数和方法中的临时缓冲区。如果一个临时缓冲区通常很小(几个K的内存),但它的大小取决于参数,那么在堆栈上创建一个小的固定大小的数组并在它足够大时使用它是有意义的。如果所需的缓冲区大小大于固定大小,则动态分配另一个足够大小的缓冲区,并在处理后释放。因此,在典型情况下,当缓冲区大小很小时,没有与malloc()
/free()
相关的开销。同时,处理数据的大小没有限制。
_dbuf
申请的内存给Dx
、Dy
、Mag
和Angle
使用。
borderInterpolate 计算外推像素的源位置。
如果通道数为3,xmap
存储位置的步长调整为3。
AutoBuffer<int> mapbuf(gradsize.width + gradsize.height + 4);
int* xmap = mapbuf.data() + 1;
int* ymap = xmap + gradsize.width + 2;
const int borderType = (int)BORDER_REFLECT_101;
for( x = -1; x < gradsize.width + 1; x++ )
xmap[x] = borderInterpolate(x - paddingTL.width + roiofs.x,
wholeSize.width, borderType) - roiofs.x;
for( y = -1; y < gradsize.height + 1; y++ )
ymap[y] = borderInterpolate(y - paddingTL.height + roiofs.y,
wholeSize.height, borderType) - roiofs.y;
// x- & y- derivatives for the whole row
int width = gradsize.width;
AutoBuffer<float> _dbuf(width*4);
float* const dbuf = _dbuf.data();
Mat Dx(1, width, CV_32F, dbuf);
Mat Dy(1, width, CV_32F, dbuf + width);
Mat Mag(1, width, CV_32F, dbuf + width*2);
Mat Angle(1, width, CV_32F, dbuf + width*3);
if (cn == 3)
{
int end = gradsize.width + 2;
xmap -= 1, x = 0;
#if CV_SSE2
for ( ; x <= end - 4; x += 4)
{
__m128i mul_res = _mm_loadu_si128((const __m128i*)(xmap + x));
mul_res = _mm_add_epi32(_mm_add_epi32(mul_res, mul_res), mul_res); // multiply by 3
_mm_storeu_si128((__m128i*)(xmap + x), mul_res);
}
#elif CV_NEON
int32x4_t ithree = vdupq_n_s32(3);
for ( ; x <= end - 4; x += 4)
vst1q_s32(xmap + x, vmulq_s32(ithree, vld1q_s32(xmap + x)));
#endif
for ( ; x < end; ++x)
xmap[x] *= 3;
xmap += 1;
}
循环内处理每一行。如果是单通道直接计算;如果是多通道使用向量指令。
float angleScale = signedGradient ? (float)(nbins/(2.0*CV_PI)) : (float)(nbins/CV_PI);
for( y = 0; y < gradsize.height; y++ )
{
const uchar* imgPtr = img.ptr(ymap[y]);
//In case subimage is used ptr() generates an assert for next and prev rows
//(see http://code.opencv.org/issues/4149)
const uchar* prevPtr = img.data + img.step*ymap[y-1];
const uchar* nextPtr = img.data + img.step*ymap[y+1];
float* gradPtr = grad.ptr<float>(y);
uchar* qanglePtr = qangle.ptr(y);
if( cn == 1 )
{
for( x = 0; x < width; x++ )
{
int x1 = xmap[x];
dbuf[x] = (float)(lut[imgPtr[xmap[x+1]]] - lut[imgPtr[xmap[x-1]]]);
dbuf[width + x] = (float)(lut[nextPtr[x1]] - lut[prevPtr[x1]]);
}
}
else
{
x = 0;
#if CV_SSE2
for( ; x <= width - 4; x += 4 )
{
int x0 = xmap[x], x1 = xmap[x+1], x2 = xmap[x+2], x3 = xmap[x+3];
typedef const uchar* const T;
T p02 = imgPtr + xmap[x+1], p00 = imgPtr + xmap[x-1];
T p12 = imgPtr + xmap[x+2], p10 = imgPtr + xmap[x];
T p22 = imgPtr + xmap[x+3], p20 = p02;
T p32 = imgPtr + xmap[x+4], p30 = p12;
__m128 _dx0 = _mm_sub_ps(_mm_set_ps(lut[p32[0]], lut[p22[0]], lut[p12[0]], lut[p02[0]]),
_mm_set_ps(lut[p30[0]], lut[p20[0]], lut[p10[0]], lut[p00[0]]));
__m128 _dx1 = _mm_sub_ps(_mm_set_ps(lut[p32[1]], lut[p22[1]], lut[p12[1]], lut[p02[1]]),
_mm_set_ps(lut[p30[1]], lut[p20[1]], lut[p10[1]], lut[p00[1]]));
__m128 _dx2 = _mm_sub_ps(_mm_set_ps(lut[p32[2]], lut[p22[2]], lut[p12[2]], lut[p02[2]]),
_mm_set_ps(lut[p30[2]], lut[p20[2]], lut[p10[2]], lut[p00[2]]));
__m128 _dy0 = _mm_sub_ps(_mm_set_ps(lut[nextPtr[x3]], lut[nextPtr[x2]], lut[nextPtr[x1]], lut[nextPtr[x0]]),
_mm_set_ps(lut[prevPtr[x3]], lut[prevPtr[x2]], lut[prevPtr[x1]], lut[prevPtr[x0]]));
__m128 _dy1 = _mm_sub_ps(_mm_set_ps(lut[nextPtr[x3+1]], lut[nextPtr[x2+1]], lut[nextPtr[x1+1]], lut[nextPtr[x0+1]]),
_mm_set_ps(lut[prevPtr[x3+1]], lut[prevPtr[x2+1]], lut[prevPtr[x1+1]], lut[prevPtr[x0+1]]));
__m128 _dy2 = _mm_sub_ps(_mm_set_ps(lut[nextPtr[x3+2]], lut[nextPtr[x2+2]], lut[nextPtr[x1+2]], lut[nextPtr[x0+2]]),
_mm_set_ps(lut[prevPtr[x3+2]], lut[prevPtr[x2+2]], lut[prevPtr[x1+2]], lut[prevPtr[x0+2]]));
__m128 _mag0 = _mm_add_ps(_mm_mul_ps(_dx0, _dx0), _mm_mul_ps(_dy0, _dy0));
__m128 _mag1 = _mm_add_ps(_mm_mul_ps(_dx1, _dx1), _mm_mul_ps(_dy1, _dy1));
__m128 _mag2 = _mm_add_ps(_mm_mul_ps(_dx2, _dx2), _mm_mul_ps(_dy2, _dy2));
__m128 mask = _mm_cmpgt_ps(_mag2, _mag1);
_dx2 = _mm_or_ps(_mm_and_ps(_dx2, mask), _mm_andnot_ps(mask, _dx1));
_dy2 = _mm_or_ps(_mm_and_ps(_dy2, mask), _mm_andnot_ps(mask, _dy1));
mask = _mm_cmpgt_ps(_mm_max_ps(_mag2, _mag1), _mag0);
_dx2 = _mm_or_ps(_mm_and_ps(_dx2, mask), _mm_andnot_ps(mask, _dx0));
_dy2 = _mm_or_ps(_mm_and_ps(_dy2, mask), _mm_andnot_ps(mask, _dy0));
_mm_storeu_ps(dbuf + x, _dx2);
_mm_storeu_ps(dbuf + x + width, _dy2);
}
#elif CV_NEON
for( ; x <= width - 4; x += 4 )
{
int x0 = xmap[x], x1 = xmap[x+1], x2 = xmap[x+2], x3 = xmap[x+3];
typedef const uchar* const T;
T p02 = imgPtr + xmap[x+1], p00 = imgPtr + xmap[x-1];
T p12 = imgPtr + xmap[x+2], p10 = imgPtr + xmap[x];
T p22 = imgPtr + xmap[x+3], p20 = p02;
T p32 = imgPtr + xmap[x+4], p30 = p12;
float32x4_t _dx0 = vsubq_f32(vsetq_f32(lut[p02[0]], lut[p12[0]], lut[p22[0]], lut[p32[0]]),
vsetq_f32(lut[p00[0]], lut[p10[0]], lut[p20[0]], lut[p30[0]]));
float32x4_t _dx1 = vsubq_f32(vsetq_f32(lut[p02[1]], lut[p12[1]], lut[p22[1]], lut[p32[1]]),
vsetq_f32(lut[p00[1]], lut[p10[1]], lut[p20[1]], lut[p30[1]]));
float32x4_t _dx2 = vsubq_f32(vsetq_f32(lut[p02[2]], lut[p12[2]], lut[p22[2]], lut[p32[2]]),
vsetq_f32(lut[p00[2]], lut[p10[2]], lut[p20[2]], lut[p30[2]]));
float32x4_t _dy0 = vsubq_f32(vsetq_f32(lut[nextPtr[x0]], lut[nextPtr[x1]], lut[nextPtr[x2]], lut[nextPtr[x3]]),
vsetq_f32(lut[prevPtr[x0]], lut[prevPtr[x1]], lut[prevPtr[x2]], lut[prevPtr[x3]]));
float32x4_t _dy1 = vsubq_f32(vsetq_f32(lut[nextPtr[x0+1]], lut[nextPtr[x1+1]], lut[nextPtr[x2+1]], lut[nextPtr[x3+1]]),
vsetq_f32(lut[prevPtr[x0+1]], lut[prevPtr[x1+1]], lut[prevPtr[x2+1]], lut[prevPtr[x3+1]]));
float32x4_t _dy2 = vsubq_f32(vsetq_f32(lut[nextPtr[x0+2]], lut[nextPtr[x1+2]], lut[nextPtr[x2+2]], lut[nextPtr[x3+2]]),
vsetq_f32(lut[prevPtr[x0+2]], lut[prevPtr[x1+2]], lut[prevPtr[x2+2]], lut[prevPtr[x3+2]]));
float32x4_t _mag0 = vaddq_f32(vmulq_f32(_dx0, _dx0), vmulq_f32(_dy0, _dy0));
float32x4_t _mag1 = vaddq_f32(vmulq_f32(_dx1, _dx1), vmulq_f32(_dy1, _dy1));
float32x4_t _mag2 = vaddq_f32(vmulq_f32(_dx2, _dx2), vmulq_f32(_dy2, _dy2));
uint32x4_t mask = vcgtq_f32(_mag2, _mag1);
_dx2 = vbslq_f32(mask, _dx2, _dx1);
_dy2 = vbslq_f32(mask, _dy2, _dy1);
mask = vcgtq_f32(vmaxq_f32(_mag2, _mag1), _mag0);
_dx2 = vbslq_f32(mask, _dx2, _dx0);
_dy2 = vbslq_f32(mask, _dy2, _dy0);
vst1q_f32(dbuf + x, _dx2);
vst1q_f32(dbuf + x + width, _dy2);
}
#endif
G y ( x , y ) = I ( x + 1 , y ) − I ( x − 1 , y ) 2 G y ( x , y ) = I ( x , y + 1 ) − I ( x , y − 1 ) 2 \begin{aligned} G_y(x, y) &= \frac{I(x+1, y) -I(x-1, y)}{2}\\ G_y(x, y) &= \frac{I(x, y+1) -I(x, y-1)}{2} \end{aligned} Gy(x,y)Gy(x,y)=2I(x+1,y)−I(x−1,y)=2I(x,y+1)−I(x,y−1)
for( ; x < width; x++ )
{
int x1 = xmap[x];
float dx0, dy0, dx, dy, mag0, mag;
const uchar* p2 = imgPtr + xmap[x+1];
const uchar* p0 = imgPtr + xmap[x-1];
dx0 = lut[p2[2]] - lut[p0[2]];
dy0 = lut[nextPtr[x1+2]] - lut[prevPtr[x1+2]];
mag0 = dx0*dx0 + dy0*dy0;
dx = lut[p2[1]] - lut[p0[1]];
dy = lut[nextPtr[x1+1]] - lut[prevPtr[x1+1]];
mag = dx*dx + dy*dy;
if( mag0 < mag )
{
dx0 = dx;
dy0 = dy;
mag0 = mag;
}
dx = lut[p2[0]] - lut[p0[0]];
dy = lut[nextPtr[x1]] - lut[prevPtr[x1]];
mag = dx*dx + dy*dy;
if( mag0 < mag )
{
dx0 = dx;
dy0 = dy;
mag0 = mag;
}
dbuf[x] = dx0;
dbuf[x+width] = dy0;
}
}
cartToPolar 计算2D矢量的大小和角度。
函数 cv::cartToPolar 计算每个2D 向量(x(I),y(I))
的幅度、角度或两者:
m
a
g
n
i
t
u
d
e
(
I
)
=
x
(
I
)
2
+
y
(
I
)
2
,
a
n
g
l
e
(
I
)
=
a
t
a
n
2
(
y
(
I
)
,
x
(
I
)
)
[
⋅
180
/
π
]
\begin{array}{l} \mathrm{magnitude} (I)= \sqrt{\mathrm{x}(I)^2+\mathrm{y}(I)^2} , \\ \mathrm{angle} (I)= \mathrm{atan2} ( \mathrm{y} (I), \mathrm{x} (I))[ \cdot180 / \pi ] \end{array}
magnitude(I)=x(I)2+y(I)2,angle(I)=atan2(y(I),x(I))[⋅180/π]
// computing angles and magnidutes
cartToPolar( Dx, Dy, Mag, Angle, false );
只有CV_SSE2
而没有CV_NEON
。由于前一循环会改变x
的值,所以能够自动跳过后面的循环。
// filling the result matrix
x = 0;
#if CV_SSE2
__m128 fhalf = _mm_set1_ps(0.5f), fzero = _mm_setzero_ps();
__m128 _angleScale = _mm_set1_ps(angleScale), fone = _mm_set1_ps(1.0f);
__m128i ione = _mm_set1_epi32(1), _nbins = _mm_set1_epi32(nbins), izero = _mm_setzero_si128();
for ( ; x <= width - 4; x += 4)
{
int x2 = x << 1;
__m128 _mag = _mm_loadu_ps(dbuf + x + (width << 1));
__m128 _angle = _mm_loadu_ps(dbuf + x + width * 3);
_angle = _mm_sub_ps(_mm_mul_ps(_angleScale, _angle), fhalf);
__m128 sign = _mm_and_ps(fone, _mm_cmplt_ps(_angle, fzero));
__m128i _hidx = _mm_cvttps_epi32(_angle);
_hidx = _mm_sub_epi32(_hidx, _mm_cvtps_epi32(sign));
_angle = _mm_sub_ps(_angle, _mm_cvtepi32_ps(_hidx));
__m128 ft0 = _mm_mul_ps(_mag, _mm_sub_ps(fone, _angle));
__m128 ft1 = _mm_mul_ps(_mag, _angle);
__m128 ft2 = _mm_unpacklo_ps(ft0, ft1);
__m128 ft3 = _mm_unpackhi_ps(ft0, ft1);
_mm_storeu_ps(gradPtr + x2, ft2);
_mm_storeu_ps(gradPtr + x2 + 4, ft3);
__m128i mask0 = _mm_sub_epi32(izero, _mm_srli_epi32(_hidx, 31));
__m128i it0 = _mm_and_si128(mask0, _nbins);
mask0 = _mm_cmplt_epi32(_hidx, _nbins);
__m128i it1 = _mm_andnot_si128(mask0, _nbins);
_hidx = _mm_add_epi32(_hidx, _mm_sub_epi32(it0, it1));
it0 = _mm_packus_epi16(_mm_packs_epi32(_hidx, izero), izero);
_hidx = _mm_add_epi32(ione, _hidx);
_hidx = _mm_and_si128(_hidx, _mm_cmplt_epi32(_hidx, _nbins));
it1 = _mm_packus_epi16(_mm_packs_epi32(_hidx, izero), izero);
it0 = _mm_unpacklo_epi8(it0, it1);
_mm_storel_epi64((__m128i*)(qanglePtr + x2), it0);
}
#endif
cvFloor() 将浮点数舍入为最接近的不大于原始值的整数。
Angle
中元素乘以angleScale
后得到其级数。
由角度对左右两个幅度产生贡献。
for( ; x < width; x++ )
{
float mag = dbuf[x+width*2], angle = dbuf[x+width*3]*angleScale - 0.5f;
int hidx = cvFloor(angle);
angle -= hidx;
gradPtr[x*2] = mag*(1.f - angle);
gradPtr[x*2+1] = mag*angle;
if( hidx < 0 )
hidx += nbins;
else if( hidx >= nbins )
hidx -= nbins;
CV_Assert( (unsigned)hidx < (unsigned)nbins );
qanglePtr[x*2] = (uchar)hidx;
hidx++;
hidx &= hidx < nbins ? -1 : 0;
qanglePtr[x*2+1] = (uchar)hidx;
}
}
HOGCache::getBlock
imgoffset
由于填充造成。
float* blockHist = buf;
assert(descriptor != 0);
// Size blockSize = descriptor->blockSize;
pt += imgoffset;
// CV_Assert( (unsigned)pt.x <= (unsigned)(grad.cols - blockSize.width) &&
// (unsigned)pt.y <= (unsigned)(grad.rows - blockSize.height) );
if( useCache )
{
CV_Assert( pt.x % cacheStride.width == 0 &&
pt.y % cacheStride.height == 0 );
Point cacheIdx(pt.x/cacheStride.width,
(pt.y/cacheStride.height) % blockCache.rows);
if( pt.y != ymaxCached[cacheIdx.y] )
{
Mat_<uchar> cacheRow = blockCacheFlags.row(cacheIdx.y);
cacheRow = (uchar)0;
ymaxCached[cacheIdx.y] = pt.y;
}
blockHist = &blockCache[cacheIdx.y][cacheIdx.x*blockHistogramSize];
uchar& computedFlag = blockCacheFlags(cacheIdx.y, cacheIdx.x);
if( computedFlag != 0 )
return blockHist;
computedFlag = (uchar)1; // set it at once, before actual computing
}
count1
、count2
和count4
在 HOGCache::init 中计算。
int k, C1 = count1, C2 = count2, C4 = count4;
const float* gradPtr = grad.ptr<float>(pt.y) + pt.x*2;
const uchar* qanglePtr = qangle.ptr(pt.y) + pt.x*2;
// CV_Assert( blockHist != 0 );
memset(blockHist, 0, sizeof(float) * blockHistogramSize);
const PixData* _pixData = &pixData[0];
for( k = 0; k < C1; k++ )
{
const PixData& pk = _pixData[k];
const float* const a = gradPtr + pk.gradOfs;
float w = pk.gradWeight*pk.histWeights[0];
const uchar* h = qanglePtr + pk.qangleOfs;
int h0 = h[0], h1 = h[1];
float* hist = blockHist + pk.histOfs[0];
float t0 = hist[h0] + a[0]*w;
float t1 = hist[h1] + a[1]*w;
hist[h0] = t0; hist[h1] = t1;
}
#if CV_SSE2
float hist0[4], hist1[4];
for( ; k < C2; k++ )
{
const PixData& pk = _pixData[k];
const float* const a = gradPtr + pk.gradOfs;
const uchar* const h = qanglePtr + pk.qangleOfs;
int h0 = h[0], h1 = h[1];
__m128 _a0 = _mm_set1_ps(a[0]), _a1 = _mm_set1_ps(a[1]);
__m128 _w = _mm_mul_ps(_mm_set1_ps(pk.gradWeight), _mm_loadu_ps(pk.histWeights));
__m128 _t0 = _mm_mul_ps(_a0, _w), _t1 = _mm_mul_ps(_a1, _w);
_mm_storeu_ps(hist0, _t0);
_mm_storeu_ps(hist1, _t1);
float* hist = blockHist + pk.histOfs[0];
float t0 = hist[h0] + hist0[0];
float t1 = hist[h1] + hist1[0];
hist[h0] = t0; hist[h1] = t1;
hist = blockHist + pk.histOfs[1];
t0 = hist[h0] + hist0[1];
t1 = hist[h1] + hist1[1];
hist[h0] = t0; hist[h1] = t1;
}
#elif CV_NEON
float hist0[4], hist1[4];
for( ; k < C2; k++ )
{
const PixData& pk = _pixData[k];
const float* const a = gradPtr + pk.gradOfs;
const uchar* const h = qanglePtr + pk.qangleOfs;
int h0 = h[0], h1 = h[1];
float32x4_t _a0 = vdupq_n_f32(a[0]), _a1 = vdupq_n_f32(a[1]);
float32x4_t _w = vmulq_f32(vdupq_n_f32(pk.gradWeight), vld1q_f32(pk.histWeights));
float32x4_t _h0 = vsetq_f32((blockHist + pk.histOfs[0])[h0], (blockHist + pk.histOfs[1])[h0], 0, 0);
float32x4_t _h1 = vsetq_f32((blockHist + pk.histOfs[0])[h1], (blockHist + pk.histOfs[1])[h1], 0, 0);
float32x4_t _t0 = vmlaq_f32(_h0, _a0, _w), _t1 = vmlaq_f32(_h1, _a1, _w);
vst1q_f32(hist0, _t0);
vst1q_f32(hist1, _t1);
(blockHist + pk.histOfs[0])[h0] = hist0[0];
(blockHist + pk.histOfs[1])[h0] = hist0[1];
(blockHist + pk.histOfs[0])[h1] = hist1[0];
(blockHist + pk.histOfs[1])[h1] = hist1[1];
}
#else
for( ; k < C2; k++ )
{
const PixData& pk = _pixData[k];
const float* const a = gradPtr + pk.gradOfs;
float w, t0, t1, a0 = a[0], a1 = a[1];
const uchar* const h = qanglePtr + pk.qangleOfs;
int h0 = h[0], h1 = h[1];
float* hist = blockHist + pk.histOfs[0];
w = pk.gradWeight*pk.histWeights[0];
t0 = hist[h0] + a0*w;
t1 = hist[h1] + a1*w;
hist[h0] = t0; hist[h1] = t1;
hist = blockHist + pk.histOfs[1];
w = pk.gradWeight*pk.histWeights[1];
t0 = hist[h0] + a0*w;
t1 = hist[h1] + a1*w;
hist[h0] = t0; hist[h1] = t1;
}
#endif
#if CV_SSE2
for( ; k < C4; k++ )
{
const PixData& pk = _pixData[k];
const float* const a = gradPtr + pk.gradOfs;
const uchar* const h = qanglePtr + pk.qangleOfs;
int h0 = h[0], h1 = h[1];
__m128 _a0 = _mm_set1_ps(a[0]), _a1 = _mm_set1_ps(a[1]);
__m128 _w = _mm_mul_ps(_mm_set1_ps(pk.gradWeight), _mm_loadu_ps(pk.histWeights));
__m128 _t0 = _mm_mul_ps(_a0, _w), _t1 = _mm_mul_ps(_a1, _w);
_mm_storeu_ps(hist0, _t0);
_mm_storeu_ps(hist1, _t1);
float* hist = blockHist + pk.histOfs[0];
float t0 = hist[h0] + hist0[0];
float t1 = hist[h1] + hist1[0];
hist[h0] = t0; hist[h1] = t1;
hist = blockHist + pk.histOfs[1];
t0 = hist[h0] + hist0[1];
t1 = hist[h1] + hist1[1];
hist[h0] = t0; hist[h1] = t1;
hist = blockHist + pk.histOfs[2];
t0 = hist[h0] + hist0[2];
t1 = hist[h1] + hist1[2];
hist[h0] = t0; hist[h1] = t1;
hist = blockHist + pk.histOfs[3];
t0 = hist[h0] + hist0[3];
t1 = hist[h1] + hist1[3];
hist[h0] = t0; hist[h1] = t1;
// __m128 _hist0 = _mm_set_ps((blockHist + pk.histOfs[3])[h0], (blockHist + pk.histOfs[2])[h0],
// (blockHist + pk.histOfs[1])[h0], (blockHist + pk.histOfs[0])[h0]);
// __m128 _hist1 = _mm_set_ps((blockHist + pk.histOfs[3])[h1], (blockHist + pk.histOfs[2])[h1],
// (blockHist + pk.histOfs[1])[h1], (blockHist + pk.histOfs[0])[h1]);
//
// _hist0 = _mm_add_ps(_t0, _hist0);
// _hist1 = _mm_add_ps(_t1, _hist1);
//
// _mm_storeu_ps(hist0, _hist0);
// _mm_storeu_ps(hist1, _hist1);
//
// (pk.histOfs[0] + blockHist)[h0] = hist0[0];
// (pk.histOfs[1] + blockHist)[h0] = hist0[1];
// (pk.histOfs[2] + blockHist)[h0] = hist0[2];
// (pk.histOfs[3] + blockHist)[h0] = hist0[3];
//
// (pk.histOfs[0] + blockHist)[h1] = hist1[0];
// (pk.histOfs[1] + blockHist)[h1] = hist1[1];
// (pk.histOfs[2] + blockHist)[h1] = hist1[2];
// (pk.histOfs[3] + blockHist)[h1] = hist1[3];
}
#elif CV_NEON
for( ; k < C4; k++ )
{
const PixData& pk = _pixData[k];
const float* const a = gradPtr + pk.gradOfs;
const uchar* const h = qanglePtr + pk.qangleOfs;
int h0 = h[0], h1 = h[1];
float32x4_t _a0 = vdupq_n_f32(a[0]), _a1 = vdupq_n_f32(a[1]);
float32x4_t _w = vmulq_f32(vdupq_n_f32(pk.gradWeight), vld1q_f32(pk.histWeights));
float32x4_t _h0 = vsetq_f32((blockHist + pk.histOfs[0])[h0],
(blockHist + pk.histOfs[1])[h0],
(blockHist + pk.histOfs[2])[h0],
(blockHist + pk.histOfs[3])[h0]);
float32x4_t _h1 = vsetq_f32((blockHist + pk.histOfs[0])[h1],
(blockHist + pk.histOfs[1])[h1],
(blockHist + pk.histOfs[2])[h1],
(blockHist + pk.histOfs[3])[h1]);
float32x4_t _t0 = vmlaq_f32(_h0, _a0, _w), _t1 = vmlaq_f32(_h1, _a1, _w);
vst1q_f32(hist0, _t0);
vst1q_f32(hist1, _t1);
(blockHist + pk.histOfs[0])[h0] = hist0[0];
(blockHist + pk.histOfs[1])[h0] = hist0[1];
(blockHist + pk.histOfs[2])[h0] = hist0[2];
(blockHist + pk.histOfs[3])[h0] = hist0[3];
(blockHist + pk.histOfs[0])[h1] = hist1[0];
(blockHist + pk.histOfs[1])[h1] = hist1[1];
(blockHist + pk.histOfs[2])[h1] = hist1[2];
(blockHist + pk.histOfs[3])[h1] = hist1[3];
}
#else
for( ; k < C4; k++ )
{
const PixData& pk = _pixData[k];
const float* a = gradPtr + pk.gradOfs;
float w, t0, t1, a0 = a[0], a1 = a[1];
const uchar* h = qanglePtr + pk.qangleOfs;
int h0 = h[0], h1 = h[1];
float* hist = blockHist + pk.histOfs[0];
w = pk.gradWeight*pk.histWeights[0];
t0 = hist[h0] + a0*w;
t1 = hist[h1] + a1*w;
hist[h0] = t0; hist[h1] = t1;
hist = blockHist + pk.histOfs[1];
w = pk.gradWeight*pk.histWeights[1];
t0 = hist[h0] + a0*w;
t1 = hist[h1] + a1*w;
hist[h0] = t0; hist[h1] = t1;
hist = blockHist + pk.histOfs[2];
w = pk.gradWeight*pk.histWeights[2];
t0 = hist[h0] + a0*w;
t1 = hist[h1] + a1*w;
hist[h0] = t0; hist[h1] = t1;
hist = blockHist + pk.histOfs[3];
w = pk.gradWeight*pk.histWeights[3];
t0 = hist[h0] + a0*w;
t1 = hist[h1] + a1*w;
hist[h0] = t0; hist[h1] = t1;
}
#endif
normalizeBlockHistogram(blockHist);
return blockHist;
HOGCacheTester::normalizeBlockHistogram
L2-norm
v
→
v
=
v
∥
v
∥
2
2
+
ϵ
2
v\to v=\frac{v}{\sqrt{\|v \|^2_2 +\epsilon^2}}
v→v=∥v∥22+ϵ2v
partSum
记录所有方块对应4个单元格的平方和。
第2个循环的作用是什么?
float* hist = &_hist[0], sum = 0.0f, partSum[4];
size_t i = 0, sz = blockHistogramSize;
#if CV_SSE2
__m128 p0 = _mm_loadu_ps(hist);
__m128 s = _mm_mul_ps(p0, p0);
for (i = 4; i <= sz - 4; i += 4)
{
p0 = _mm_loadu_ps(hist + i);
s = _mm_add_ps(s, _mm_mul_ps(p0, p0));
}
_mm_storeu_ps(partSum, s);
#elif CV_NEON
float32x4_t p0 = vld1q_f32(hist);
float32x4_t s = vmulq_f32(p0, p0);
for (i = 4; i <= sz - 4; i += 4)
{
p0 = vld1q_f32(hist + i);
s = vaddq_f32(s, vmulq_f32(p0, p0));
}
vst1q_f32(partSum, s);
#else
partSum[0] = 0.0f;
partSum[1] = 0.0f;
partSum[2] = 0.0f;
partSum[3] = 0.0f;
for ( ; i <= sz - 4; i += 4)
{
partSum[0] += hist[i] * hist[i];
partSum[1] += hist[i+1] * hist[i+1];
partSum[2] += hist[i+2] * hist[i+2];
partSum[3] += hist[i+3] * hist[i+3];
}
#endif
float t0 = partSum[0] + partSum[1];
float t1 = partSum[2] + partSum[3];
sum = t0 + t1;
for ( ; i < sz; ++i)
sum += hist[i]*hist[i];
float scale = 1.f/(std::sqrt(sum)+sz*0.1f), thresh = (float)descriptor->L2HysThreshold;
对归一化直方图并进行截断,重新计算平方和,再行归一化。
i = 0, sum = 0.0f;
#if CV_SSE2
__m128 _scale = _mm_set1_ps(scale);
static __m128 _threshold = _mm_set1_ps(thresh);
__m128 p = _mm_mul_ps(_scale, _mm_loadu_ps(hist));
p = _mm_min_ps(p, _threshold);
s = _mm_mul_ps(p, p);
_mm_storeu_ps(hist, p);
for(i = 4 ; i <= sz - 4; i += 4)
{
p = _mm_loadu_ps(hist + i);
p = _mm_mul_ps(p, _scale);
p = _mm_min_ps(p, _threshold);
s = _mm_add_ps(s, _mm_mul_ps(p, p));
_mm_storeu_ps(hist + i, p);
}
_mm_storeu_ps(partSum, s);
#elif CV_NEON
float32x4_t _scale = vdupq_n_f32(scale);
static float32x4_t _threshold = vdupq_n_f32(thresh);
float32x4_t p = vmulq_f32(_scale, vld1q_f32(hist));
p = vminq_f32(p, _threshold);
s = vmulq_f32(p, p);
vst1q_f32(hist, p);
for(i = 4 ; i <= sz - 4; i += 4)
{
p = vld1q_f32(hist + i);
p = vmulq_f32(p, _scale);
p = vminq_f32(p, _threshold);
s = vaddq_f32(s, vmulq_f32(p, p));
vst1q_f32(hist + i, p);
}
vst1q_f32(partSum, s);
#else
partSum[0] = 0.0f;
partSum[1] = 0.0f;
partSum[2] = 0.0f;
partSum[3] = 0.0f;
for( ; i <= sz - 4; i += 4)
{
hist[i] = std::min(hist[i]*scale, thresh);
hist[i+1] = std::min(hist[i+1]*scale, thresh);
hist[i+2] = std::min(hist[i+2]*scale, thresh);
hist[i+3] = std::min(hist[i+3]*scale, thresh);
partSum[0] += hist[i]*hist[i];
partSum[1] += hist[i+1]*hist[i+1];
partSum[2] += hist[i+2]*hist[i+2];
partSum[3] += hist[i+3]*hist[i+3];
}
#endif
t0 = partSum[0] + partSum[1];
t1 = partSum[2] + partSum[3];
sum = t0 + t1;
for( ; i < sz; ++i)
{
hist[i] = std::min(hist[i]*scale, thresh);
sum += hist[i]*hist[i];
}
scale = 1.f/(std::sqrt(sum)+1e-3f), i = 0;
#if CV_SSE2
__m128 _scale2 = _mm_set1_ps(scale);
for ( ; i <= sz - 4; i += 4)
{
__m128 t = _mm_mul_ps(_scale2, _mm_loadu_ps(hist + i));
_mm_storeu_ps(hist + i, t);
}
#elif CV_NEON
float32x4_t _scale2 = vdupq_n_f32(scale);
for ( ; i <= sz - 4; i += 4)
{
float32x4_t t = vmulq_f32(_scale2, vld1q_f32(hist + i));
vst1q_f32(hist + i, t);
}
#endif
for ( ; i < sz; ++i)
hist[i] *= scale;
参考资料:
- OpenCV HOGDescriptor 参数图解
- OpenCV: How to use HOGDescriptor::detect method?
- Hog特征提取 openCV
- What is the macro CV_OCL_RUN used for in OpenCV?
- 机器视觉算法(第8期)----OpenCV中事半功倍的工具函数
- 手撕OpenCV源码之filter2D(一)
- Computer Vision on the GPU with OpenCV
- enhanced HOG features
- 人脸检测(1)——HOG特征
- Fast HOG源码注释
- HOG不正传
- HIGH PERFORMANCE PEDESTRIAN DETECTION ON TEGRA X1
- rbgirshick/voc-dpm
- Efficient HOG human detection
- Histogram of Oriented Gradients (HOG) Descriptor
- The OpenVX Specification: HOG
- OpenCV中Mat属性step,size,step1,elemSize,elemSize1
- different step size output for cv::Mat::step1
- nicewsyly/ECO
- 一种多尺度的KCF跟踪程序代码分析(一)
- Joelgranados/Learcode
- DPD/ffld_dpm/HOGPyramid.cpp
- Not getting what ‘spatial weights’ for HOG are
- Fast Calculation of Histogram of Oriented Gradient Feature by Removing Redundancy in Overlapping Block