53. 最大子序和 (动态规划/分治)

最大子序和问题

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

基础解法

将容器所有的可能组合都进行求值得出其中最大值。

int maxSubArray(vector<int>& nums) {
	int size = nums.size();
	int value = 0;
	int result = nums[0]; // 将第一个值最为初始比较值
	for (int start = 0; start < size; start++)
	{
		value = 0;
		for(int j = start; j < size; j++)
		{
			value += nums[j];
			if(result < value)
			{
				result = value;
			}
		}
	}
	return result;
}
  • 时间复杂度
    O(n^2)
  • 空间复杂度
    O(1)
利用特性

对于该问题,则必有最大得组合开始和结尾得数据均为正数 ,不可能存在开始或结束值为负数求得最大值。

int maxSubArray(vector<int>& nums) {
	int res = nums[0];
    int sum = 0;
    for (int num : nums) {
        if (sum > 0)
            sum += num;
        else  // 值为负数,重新开始累计
            sum = num;
        res =  std::max(res, sum); // 求得最大值
    }
    return res;
}
  • 时间复杂度
    O(n)
  • 空间复杂度
    O(1)
动态规划

实际上是把特性,提取出来理论。
假设数组nums的长度为N,则下标范围为[0,N-1]
我们用 f(i) 代表以第 i 个数结尾的「连续子数组的最大和」,那么很显然我们要求的答案就是:
所有f(i)中最大的那一个。
在这里插入图片描述
因此我们只需要求出每个位置的 f(i),然后返回 f 数组中的最大值即可。那么我们如何求 ff(i) 呢?我们可以考虑nums[i]单独成为一段还是加入 f(i-1) 对应的那一段,这取决nums[i] 和 f(i-1) +nums[i] 的大小,我们希望获得一个比较大的,于是可以写出如下的动态转移方程,求得nums[i],与f(i-1)+nums[i]中大的那个。
在这里插入图片描述

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int pre = 0, maxAns = nums[0];
        for (const auto &x: nums) {
            pre = max(pre + x, x); // 求得f(i-1)+nums[i] 与num[i]中最大的值 (公式2)
            maxAns = max(maxAns, pre); // 求得记录之前的值与上面的值中最大的值。 (公式1)
        }
        return maxAns;
    }
};
  • 时间复杂度
    O(n)
  • 空间复杂度
    O(1)
分治

分治思想就是将一个问题分解成为N个子问题,然后将多个解合并为一。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值