LeetCode 53. 最大子序和(Python、动态规划、分治(线段树))

学习分治(线段树) 的应用,同时记住递归的空间复杂度(栈的深度)

题目描述
在这里插入图片描述

方法一:动态规划

思路和算法

假设 nums 数组的长度是 n n n,下标从 0 0 0 n − 1 n - 1 n1

我们用 a i a_i ai 代表 n u m s [ i ] nums[i] nums[i],用 d p ( i ) dp(i) dp(i) 代表以第 i i i 个数结尾的「连续子数组的最大和」,那么很显然我们要求的答案就是:

max ⁡ 0 ≤ i ≤ n − 1 f ( i ) \max_{0 \leq i \leq n - 1} f(i) 0in1maxf(i)

因此我们只需要求出每个位置的 d p ( i ) dp(i) dp(i),然后返回 dp 数组中的最大值即可。那么我们如何求 d p ( i ) dp(i) dp(i) 呢?我们可以考虑 a i a_i ai 单独成为一段还是加入 d p ( i − 1 ) dp(i - 1) dp(i1) 对应的那一段,这取决于 a i a_i ai d p ( i − 1 ) + a i dp(i - 1) + a_i dp(i1)+ai 的大小,我们希望获得一个比较大的,于是可以写出这样的动态规划转移方程:
d p ( i ) = max ⁡ { d p ( i − 1 ) + a i , a i } dp(i) = \max \{ dp(i - 1) + a_i, a_i \} dp(i)=max{dp(i1)+ai,ai}

不难给出一个时间复杂度 O ( n ) O(n) O(n)、空间复杂度 O ( n ) O(n) O(n) 的实现,即用一个 dp 数组来保存 d p ( i ) dp(i) dp(i) 的值,用一个循环求出所有 d p ( i ) dp(i) dp(i)

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        dp = []  # 以nums[i]结尾的最大连续子数组和
        maxsum = nums[0]
        for i in range(len(nums)):
            if i == 0 or dp[i-1] <= 0:
                dp.append(nums[i])
            elif dp[i-1] > 0:
                dp.append(dp[i-1] + nums[i])
            if dp[i] > maxsum:
                maxsum = dp[i]
        return maxsum

在这里插入图片描述
更进一步的,考虑到 d p ( i ) dp(i) dp(i) 只和 d p ( i − 1 ) dp(i - 1) dp(i1) 相关,于是我们可以只用一个变量 pre 来维护对于当前 d p ( i ) dp(i) dp(i) d p ( i − 1 ) dp(i - 1) dp(i1) 的值是多少,从而让空间复杂度降低到 O ( 1 ) O(1) O(1),这有点类似「滚动数组」的思想。

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        pre = 0
        maxsum = nums[0]
        for i in range(len(nums)):
            pre = max(nums[i], pre + nums[i])
            maxsum = max(maxsum, pre)
        return maxsum

在这里插入图片描述
复杂度

  • 时间复杂度: O ( n ) O(n) O(n),其中 n n nnums 数组的长度。我们只需要遍历一遍数组即可求得答案。
  • 空间复杂度: O ( 1 ) O(1) O(1),我们只需要常数空间存放若干变量。

方法二:分治

思路和算法

这个分治方法类似于「线段树求解 LCIS 问题」的 pushUp 操作。 也许读者还没有接触过线段树,没有关系,方法二的内容假设你没有任何线段树的基础。当然,如果读者有兴趣的话,推荐看一看线段树区间合并法解决 多次询问 的「区间最长连续上升序列问题」和「区间最大子段和问题」,还是非常有趣的。

我们定义一个操作 get(a, l, r) 表示查询 a a a 序列 [ l , r ] [l, r] [l,r] 区间内的最大子段和,那么最终我们要求的答案就是 get(nums, 0, nums.size() - 1)。如何分治实现这个操作呢?对于一个区间 [ l , r ] [l, r] [l,r],我们取 m = ⌊ l + r 2 ⌋ m = \lfloor \frac{l + r}{2} \rfloor m=2l+r,对区间 [ l , m ] [l, m] [l,m] [ m + 1 , r ] [m + 1, r] [m+1,r] 分治求解。当递归逐层深入直到区间长度缩小为 1 1 1 的时候,递归「开始回升」。这个时候我们考虑如何通过 [ l , m ] [l, m] [l,m] 区间的信息和 [ m + 1 , r ] [m + 1, r] [m+1,r] 区间的信息合并成区间 [ l , r ] [l, r] [l,r] 的信息。最关键的两个问题是:

  • 我们要维护区间的哪些信息呢?
  • 我们如何合并这些信息呢?

对于一个区间 [ l , r ] [l, r] [l,r],我们可以维护四个量:

  • lSum 表示 [ l , r ] [l, r] [l,r] 内以 l l l 为左端点的最大子段和
  • rSum 表示 [ l , r ] [l, r] [l,r] 内以 r r r 为右端点的最大子段和
  • mSum 表示 [ l , r ] [l, r] [l,r] 内的最大子段和
  • iSum 表示 [ l , r ] [l, r] [l,r] 的区间和

以下简称 [ l , m ] [l, m] [l,m] [ l , r ] [l, r] [l,r] 的「左子区间」, [ m + 1 , r ] [m + 1, r] [m+1,r] [ l , r ] [l, r] [l,r] 的「右子区间」。我们考虑如何维护这些量呢(如何通过左右子区间的信息合并得到 [ l , r ] [l, r] [l,r] 的信息)?对于长度为 1 1 1 的区间 [ i , i ] [i, i] [i,i],四个量的值都和 a i a_i ai 相等。对于长度大于 1 1 1 的区间:

  • 首先最好维护的是 iSum,区间 [ l , r ] [l, r] [l,r]iSum 就等于「左子区间」的 iSum 加上「右子区间」的 iSum
  • 对于 [ l , r ] [l, r] [l,r]lSum,存在两种可能,它要么等于「左子区间」的 lSum,要么等于「左子区间」的 iSum 加上「右子区间」的 lSum,二者取大。
  • 对于 [ l , r ] [l, r] [l,r]rSum,同理,它要么等于「右子区间」的 rSum,要么等于「右子区间」的 iSum 加上「左子区间」的 rSum,二者取大。
  • 当计算好上面的三个量之后,就很好计算 [ l , r ] [l, r] [l,r]mSum 了。我们可以考虑 [ l , r ] [l, r] [l,r]mSum 对应的区间是否跨越 m m m——它可能不跨越 m m m,也就是说 [ l , r ] [l, r] [l,r]mSum 可能是「左子区间」的 mSum 和「右子区间」的 mSum 中的一个;它也可能跨越 m m m,可能是「左子区间」的 rSum 和 「右子区间」的 lSum 求和。三者取大。

这样问题就得到了解决。

class Status():
        def __init__(self):
            self.lSum = None
            self.rSum = None
            self.mSum = None
            self.iSum = None


class Solution:
    def pushUp(self, lSub_Status, rSub_Status):
        '''
        合成两个子区间的Status
        '''
        status = Status()
        status.lSum = max(lSub_Status.lSum, lSub_Status.iSum + rSub_Status.lSum)
        status.rSum = max(rSub_Status.rSum, rSub_Status.iSum + lSub_Status.rSum)
        status.mSum = max(lSub_Status.mSum, rSub_Status.mSum, lSub_Status.rSum + rSub_Status.lSum)
        status.iSum = lSub_Status.iSum + rSub_Status.iSum
        return status

    def get(self, nums, left, right):
        '''
        获得nums[left, right]区间上的Status
        '''
        status = Status()
        if left == right:
            status.lSum = nums[left]
            status.rSum = nums[left]
            status.mSum = nums[left]
            status.iSum = nums[left]
            return status

        # 分治
        m = (left + right) // 2
        lSub_Status = self.get(nums, left, m)
        rSub_Status = self.get(nums, m+1, right)
        return self.pushUp(lSub_Status, rSub_Status)

    def maxSubArray(self, nums: List[int]) -> int:
        return self.get(nums, 0, len(nums) - 1).mSum

在这里插入图片描述
复杂度分析

假设序列 a a a 的长度为 n n n

  • 时间复杂度:假设我们把递归的过程看作是一颗二叉树的先序遍历,那么这颗二叉树的深度的渐进上界为 O ( log ⁡ n ) O(\log n) O(logn),这里的总时间相当于遍历这颗二叉树的所有节点,故总时间的渐进上界是 O ( ∑ i = 1 log ⁡ n 2 i − 1 ) = O ( n ) O(\sum_{i = 1}^{\log n} 2^{i - 1}) = O(n) O(i=1logn2i1)=O(n),故渐进时间复杂度为 O ( n ) O(n) O(n)
  • 空间复杂度:递归会使用 O ( log ⁡ n ) O(\log n) O(logn) 的栈空间,故渐进空间复杂度为 O ( log ⁡ n ) O(\log n) O(logn)

题外话

「方法二」相较于「方法一」来说,时间复杂度相同,但是因为使用了递归,并且维护了四个信息的结构体,运行的时间略长,空间复杂度也不如方法一优秀,而且难以理解。那么这种方法存在的意义是什么呢?

对于这道题而言,确实是如此的。但是仔细观察「方法二」,它不仅可以解决区间 [ 0 , n − 1 ] [0, n - 1] [0,n1],还可以用于解决任意的子区间 [ l , r ] [l, r] [l,r] 的问题。如果我们把 [ 0 , n − 1 ] [0, n - 1] [0,n1] 分治下去出现的所有子区间的信息都用堆式存储的方式记忆化下来,即建成一颗真正的树之后,我们就可以在 O ( log ⁡ n ) O(\log n) O(logn) 的时间内求到任意区间内的答案,我们甚至可以修改序列中的值,做一些简单的维护,之后仍然可以在 O ( log ⁡ n ) O(\log n) O(logn) 的时间内求到任意区间内的答案,对于大规模查询的情况下,这种方法的优势便体现了出来。这棵树就是上文提及的一种神奇的数据结构——线段树

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值