62. 不同路径
问题:
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1:
输入:m = 3, n = 7
输出:28
示例 2:
输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下
示例 3:
输入:m = 7, n = 3
输出:28
示例 4:
输入:m = 3, n = 3
输出:6
提示:
1 <= m, n <= 100
题目数据保证答案小于等于 2 * 109
解决:
dp动态规划
func uniquePaths(m int, n int) int {
dp := make([]int,n)
for i:=0;i<n;i++{
dp[i]=1
}
for i:= 1;i<m;i++{
for j:=1;j<n;j++{
dp[j]+=dp[j-1]
}
}
return dp[n-1]
}
def uniquePaths(self, m, n):
dp=[1]*n
for i in range(1,m):
for j in range(1,n):
dp[j]+=dp[j-1]
return dp[n-1]