参考书籍《Adaptive Filter Theory (5th Edi - Haykin, Simon O_》
下图为维纳滤波的框图

损失函数定位为输出误差平方期望最小,最后经过推到得出结论为权值系数计算:

时域维纳滤波代码如下:
import numpy as np
import matplotlib.pyplot as plt
import scipy.signal
def awgn(x, snr, seed=7):
'''
加入高斯白噪声 Additive White Gaussian Noise
:param x: 原始信号
:param snr: 信噪比
:return: 加入噪声后的信号
'''
np.random.seed(seed) # 设置随机种子
snr
本文介绍了时域维纳滤波的概念,根据《Adaptive Filter Theory》一书,阐述了滤波器设计的目标是输出误差平方期望最小,并提供了权值系数的计算方法。通过Python和numpy实现,模拟了一个包含正弦和余弦信号以及高斯白噪声的场景。当初始相位为0时,滤波效果良好,但相位为pi/4时,中间位置存在轻微失真。失真的原因可能是滤波器对非零均值信号的处理不够理想,因此建议进行信号的标准化处理以确保准确性。
订阅专栏 解锁全文
997

被折叠的 条评论
为什么被折叠?



