在MATLAB中直接有个维纳滤波函数wiener2可以调用,觉得很有用,但是在python并没有直接可以调用维纳滤波的函数,看见网上很多的教程都是自己根据原理自己编写的函数,这样也很有用,不过有个直接调用的函数我觉得很方便,最后我发现SciPy库有wiener滤波函数的调用。
我不写维纳滤波的原理,其原理在网上有很多博主写的都很详细、易懂,我在此主要讲一下如何实现SciPy库中wiener的实现。
语法:
scipy.signal.wiener
(
im,
mysize=None,
noise=None
)
输入参数:
- im:矩阵ndarray(一个N维矩阵)
- mysize:每个维度滤波窗口的大小,一个标量或者长度为N的列表,最好为奇数值
- noise:使用的噪音功率。如果没有,则估计噪声为输入的局部方差的平均值。
返回参数:
- out:跟im大小相同的维纳滤波的结果
举例说明:
from scipy.signal import wiener
import cv2
import numpy as np
import matplotlib.pyplot as plt
def gasuss_noise(image, mean=0, var=0.001):
'''
添加高斯噪声
mean : 均值
var : 方差
'''
image = np.array(image/255, dtype=float)
noise = np.random.normal(mean, var ** 0.5, image.shape)
out = image + noise
if out.min() < 0:
low_clip = -1.
else:
low_clip = 0.
out = np.clip(out, low_clip, 1.0)
out = np.uint8(out*255)
#cv.imshow("gasuss", out)
return out
if __name__ == '__main__':
lena = cv2.imread(r'C:\Users\99347\.atom\packages\markdown-preview-plus\node_modules\markdown-it-imsize\test\img\lena.jpg')
if lena.shape[-1] == 3:
lenaGray = cv2.cvtColor(lena, cv2.COLOR_BGR2GRAY)
else:
lenaGray = lena.copy()
plt.figure('原图')
plt.imshow(lenaGray, cmap='gray')
# 添加高斯噪声
lenaNoise = gasuss_noise(lenaGray)
plt.figure('添加高斯噪声后的图像')
plt.imshow(lenaNoise, cmap='gray')
# 维纳滤波
lenaNoise = lenaNoise.astype('float64')
lenaWiener = wiener(lenaNoise, [3, 3])
lenaWiener = np.uint8(lenaWiener / lenaWiener.max() * 255)
plt.figure('经过维纳滤波后的图像')
plt.imshow(lenaWiener, cmap='gray')
plt.show()
输出结果:
