linux下mnist验证caffe与结果可视化

此篇为了记录过程如题。

  1. linux下配置编译caffe网上资源很多。在make runtest和import caffe成功后进行本文的实验。
  2. 下载数据
    cd ~/caffe/
    ./data/mnist/get_mnist.sh
    ./examples/mnist/create_mnist.sh
    修改配置
    cd ~/caffe/
    sudo gedit ./examples/mnist/lenet_solver.prototxt
    修改:solver_mode: CPU
    训练模型
    cd ~/caffe/
    ./examples/mnist/train_lenet.sh(log顺便记录下,下部分有)

  3. 结果可视化:
    caffe中其实已经自带了这样的小工具 caffe-master/tools/extra/parse_log.sh caffe-master/tools/extra/extract_seconds.py和 caffe-master/tools/extra/plot_training_log.py.example ,使用方法如下:
    (1)新建自己的log文件,注意目录对应。在caffe下mkdir log;
    在训练过程中的命令中加入一行参数 ,实现Log日志的记录:gedit ./examples/mnist/train_lenet.sh
    写入:
    LOG=log/train-date +%Y-%m-%d-%H-%M-%S.log
    CAFFE=~/caffe/build/tools/caffe
    ./build/tools/caffe train –solver=examples/mnist/lenet_solver.prototxt 2>&1 | tee LOG @
    (2)解析训练日志
    将最上面说的3个脚本文件拷贝到Log 文件夹下.
    ./parse_log.sh caffe.log (自己的名字)
    后面的参数为log文件名,这样就会在当前文件夹下生成一个.train文件和一个.test文件
    (3)生成图片
    ./plot_training_log.py.example 2 save.png caffe.log
    就可以生成训练过程中的Test accuracy vs. Iters 曲线,其中0代表曲线类型, save.png 代表保存的图片名称。
    caffe中支持很多种曲线绘制,通过指定不同的类型参数即可,具体参数如下:

    Notes:
    1. Supporting multiple logs.
    2. Log file name must end with the lower-cased “.log”.
    Supported chart types:
    0: Test accuracy vs. Iters
    1: Test accuracy vs. Seconds
    2: Test loss vs. Iters
    3: Test loss vs. Seconds
    4: Train learning rate vs. Iters
    5: Train learning rate vs. Seconds
    6: Train loss vs. Iters
    7: Train loss vs. Seconds

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值