DeepID2+ face recognition

DeepID2+ face recognition

DeepID2+[1]的结构与DeepID2[2]基本一致,不同之处在于每个conv layer的feature maps数量不同,同时每个conv layer在maxpooling之后都连接了fully-connected layer(简称Fc-1,Fc-2,Fc-3,Fc-4)。与DeepID2一样,DeepID2+也引入了identification signals和verifacation signals,并且在所有的Fc层(Fc-1,Fc-2,Fc-3,Fc-4层)均含有这两类信号。
由于对结构进行了调整,使得人脸验证的准确率提升到了99.47%,并且对遮挡情况具有一定的鲁棒性。除此之外,在论文中作者还验证了DeepID2+的三个特性——sparsity,selectiveness和robustness,试图揭示深度神经网络为何具有如此高效的性能。

Network Architecture


上图为DeepID2+的网络结构。这里有几个不同的地方:

1.每个conv层的feature maps都增加到了128
2.training set更大,除了包含原来DeepID,DeepID2使用的CelebFaces+,还加入了WDRef数据集。使得训练集包含了290000 张12000不同identities的人脸,在之前的DeepID2中使用的数据集只包含了160000张8000不同identities的人脸。
3.对于每个conv层,在maxpooling之后都会连接一个fully-connected层,它们作为最终的人脸feature,后面的实验会介绍这几个fc层的使用,FC-4的鲁棒性是最好的。每个FC层都是512维的,训练的过程中都引入了identification signals和verifacation signals。

可以看出,相比于DeepID2,DeepID2+的网络规模更大,而且引入的信息也更多了。

Performance

在训练的过程中,参数的更新方式和DeepID2基本一样,input face patches也采用了和DeepID中一样的25个patches。
测试的时候,DeepID2+采用了FC-4 layer作为特征。
在性能上,25个不同的DeepID2+ features都完胜DeepID2 features

Three Properties

在介绍了DeepID2+之后,作者还试图从本质上揭示它如此高效的本质,揭开深度神经网络的神秘面纱。

sparsity

对于同一张输入图像,不同的神经元对它的反应是不同的,大概有一半的神经元处于激活状态,而另一半处于抑制状态,这使得不同的identity具有最大的区分性。
而对于同一神经元,大概有一半的样本能将其激活,而对另一半处于抑制状态,这使得神经网络具有最大的区分能力。
同时,是否使用dropout对上述两种现象基本没有影响。

之后,文章还验证了神经元的激活状态比激活值更重要,在将DeepID2+ features二值化之后,得到的验证结果只比原来稍微下降一点。将来可采用binary code直接作为特征,这样既能提高匹配速度,还能节省存储空间。

selectiveness

这里说明DeepID2+ features具有属性信息,除了能利用它来进行face cerification,还可以用来进行性别、肤色、种族等的区分。
除此之外,每个神经元对同一identify或者attribute的敏感程度不同,200左右的神经元较为活跃,neural ID大于400的神经元活跃度很低。而对于其它所有的图像,活跃度变化基本不大,而且活跃度基本处于中间位置,这里可以看出它增加了网络的识别能力。下图也显示了这一现象。

神经元激活值的分布直方图也反映了这一现象,我们可以看出,神经元对于不同的identify和attirbute都会有相应的反应,每个神经元都有一定的记忆性,包含大量的样本属性信息。

robustness


作者对测试样本采用了两种不同的处理方法——从下往上按一定比例遮挡,随机block遮挡。
但是这里有一点需要注意的是,训练样本中并未含有经遮挡处理后的图像,而在后面的人脸验证中却对遮挡具有很好的鲁棒性,这也说明了DeepID2+有多神奇。

对于不同的遮挡情况,神经元的激活值有会有相应的变化,当遮挡面积越来越多的时候,神经元的激活状态就开始具有一定的随机性。回想一下前面介绍的神经元激活值分布直方图,其实随着遮挡面积的增加,它就趋向于将输入识别为其它类别时的激活情况一致,因此这些神经元就失去了特殊性。
实验中作者还将25个FC-4+ features合并(DeepID2+ combine),同时还分别测试single FC-1,FC-2,FC-3,FC-4以及传统特征提取方法LBP,验证它们对于遮挡情况的鲁棒性。发现FC-1,FC-2,FC-3,FC-4鲁棒性基本上是从小到大排列的,DeepID2+ combine最高,而传统的LBP是最差的。在遮挡面积达到40%的时候,DeepID2+还能保持在90%以上。occlusion block大小为50×50的时候,DeepID2+最高还能达到92.4%,而LBP急剧下降。


25个FC-4组成的DeepID2+ combine features具有非常好的鲁棒性,同时二值化后的DeepID2+ combine features仍然能基本上完全保留原来的信息,可分性依然非常高,相比DeepID2,DeepID2+ combine features的维度更大一些。

参考文献

[1] Sun Y, Wang X, Tang X. Deeply learned face representations are sparse, selective, and robust[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 2892-2900.
[2] Sun Y, Chen Y, Wang X, et al. Deep learning face representation by joint identification-verification[C]//Advances in Neural Information Processing Systems. 2014: 1988-1996.

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
本课程适合具有一定深度学习基础,希望发展为深度学习之计算机视觉方向的算法工程师和研发人员的同学们。基于深度学习的计算机视觉是目前人工智能最活跃的领域,应用非常广泛,如人脸识别和无人驾驶中的机器视觉等。该领域的发展日新月异,网络模型和算法层出不穷。如何快速入门并达到可以从事研发的高度对新手和中级水平的学生而言面临不少的挑战。精心准备的本课程希望帮助大家尽快掌握基于深度学习的计算机视觉的基本原理、核心算法和当前的领先技术,从而有望成为深度学习之计算机视觉方向的算法工程师和研发人员。本课程系统全面地讲述基于深度学习的计算机视觉技术的原理并进行项目实践。课程涵盖计算机视觉的七大任务,包括图像分类、目标检测、图像分割(语义分割、实例分割、全景分割)、人脸识别、图像描述、图像检索、图像生成(利用生成对抗网络)。本课程注重原理和实践相结合,逐篇深入解读经典和前沿论文70余篇,图文并茂破译算法难点, 使用思维导图梳理技术要点。项目实践使用Keras框架(后端为Tensorflow),学员可快速上手。通过本课程的学习,学员可把握基于深度学习的计算机视觉的技术发展脉络,掌握相关技术原理和算法,有助于开展该领域的研究与开发实战工作。另外,深度学习之计算机视觉方向的知识结构及学习建议请参见本人CSDN博客。本课程提供课程资料的课件PPT(pdf格式)和项目实践代码,方便学员学习和复习。本课程分为上下两部分,其中上部包含课程的前五章(课程介绍、深度学习基础、图像分类、目标检测、图像分割),下部包含课程的后四章(人脸识别、图像描述、图像检索、图像生成)。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值