DeepSeek完了,马斯克刚刚发布Grok 3!

DeepSeek完了,马斯克刚刚发布Grok 3!

刚刚,AI领域又迎来了一个重磅炸弹 —— 马斯克的xAI正式发布了Grok 3,一个号称"地球上最聪明的AI"的全新模型。

🔗直播回放:https://x.com/i/broadcasts/1gqGvjeBljOGB

[概览图]

不是我说,这次马斯克真的有点狠…

[对比图 25:53]

在短短214天里,他们用了20万张NVIDIA H100芯片,打造出了一个能在多个维度超越GPT-4、Claude 3.5和Gemini 2.0的"最强大脑"。

这是什么概念?简单说就是,人家用半年时间,完成了别人五六年的进化历程。

[1400图 27:07]

最让人惊艳的是什么?Grok 3在ChatBot Arena竞技场上的表现简直是开挂级别的 —— 它成为了历史上第一个评分突破1400分的大模型!

要知道,之前最强的Gemini 2.0也才1300出头。这就像是考试中,别人还在90分徘徊,你直接考了个满分还加了福利题。

但最吸引眼球的其实是Grok 3的"思维链"推理机制。

[写代码图 41:46]

在发布会现场,他们展示了一个超酷的演示:让Grok 3写了一段太空发射的3D动画代码,还真就做出了一个地球和火星之间往返的动画。这不是简单的代码输出,而是需要AI理解复杂的物理知识,这才是真正的智能表现。

而且,Grok 3还有个让竞争对手羡慕嫉妒恨的优势:它的可用性

如果你是X(原Twitter)的Premium+会员,现在就能开始使用Grok 3了。不过马斯克建议大家可以等一周,因为他们还在优化一些新功能,比如即将推出的语音交互功能。

讲真,看完整个发布会,我不得不说马斯克这次是真的有备而来。

[会员图 52:17]

他不仅在性能上超越了竞争对手,在商业化布局上也做足了准备:既有面向普通用户的基础版本,还推出了SuperGrok会员服务(每月30美元或每年300美元),甚至还搞了个类似OpenAI的DeepSearch功能

最逗的是,马斯克在发布会后还不忘在X上调侃一下OpenAI,这个"老冤家"的关系真是越来越有意思了。

不过话说回来,有竞争才有进步,这种你追我赶的局面,对我们用户来说其实是最好的。

在这里插入图片描述

看到这里,相信大家都迫不及待想试试这个"最强大脑"了。

不过我建议还是听马斯克的,等一周后再体验会更好。毕竟是新产品,让它先完善一下,我们体验起来也更顺畅。而且据说他们后续还要开源Grok 2的代码,这又是一个值得期待的大招。

在AI的世界里,一天真的就像人间的一年。仿佛昨天还在谈论GPT-4有多厉害,DeepSeek有多牛皮,今天就有了新的"最强王者"。

这个领域的发展速度,真的让人目不暇接。但有一点是确定的:AI的竞争才刚刚开始,未来还会有更多惊喜等着我们

最后说句实在话:虽然马斯克总喜欢放些大话,但这次的Grok 3,看起来是真的有两把刷子。让我们拭目以待,看看它到底能不能担得起"地球上最聪明的AI"这个头衔。

你觉得呢?欢迎在评论区分享你的想法❗️

### Grok3DeepSeek 大型语言模型的特性与性能对比 #### 特性分析 Grok系列由埃隆·马斯克旗下的xAI团队开发,专注于高性能和多功能性的大型语言模型。Grok3继承了其前代产品的优势,在多模态处理能力方面表现出色,能够高效地处理图像、音频以及文本等多种数据形式[^1]。相比之下,DeepSeek则是一组由DeepSeek公司推出的开源大型语言模型,主要目标是通过开放源代码的方式促进社区参与和技术进步。DeepSeek模型家族包括多个变体,如DeepSeek0、DeepSeek1等,这些模型在不同应用场景下各有侧重。 在功能多样性上,Grok3因其强大的上下文理解能力和实时交互优化设计而闻名,特别适合于复杂任务指令的理解与执行。例如,它可以轻松完成涉及多步逻辑推理的任务,并且具备较高的对话连贯性和准确性。与此同时,DeepSeek虽然也支持复杂的自然语言处理任务,但由于其开源性质,可能更倾向于满足广泛的开发者需求而非单一极致体验。这使得它在某些特定领域内的表现或许不及闭源商业产品那样精细打磨,但在灵活性和可定制化程度上有一定优势。 #### 性能评估 就计算效率而言,两款模型都经过精心调优以适应大规模部署环境下的资源约束条件。然而,由于具体实现细节未完全公开,很难给出绝对意义上的量化比较结果。但从已知信息来看,Grok3得益于特斯拉硬件生态系统的紧密集成,在GPU加速等方面可能会占据一定先机;而对于希望减少依赖专有技术栈的企业来说,采用标准接口定义并广泛兼容主流框架的DeepSeek可能是更好的选择。 另外值得注意的是安全性考量——鉴于敏感行业对于数据隐私保护日益增长的关注度,任何一款成功的AI解决方案都需要妥善应对潜在风险因素。在这方面,尽管两者均承诺遵循严格的数据治理原则来保障用户信息安全,但考虑到背后运营主体的不同背景及其各自所处监管环境差异,实际操作层面仍可能存在细微差别值得进一步探讨研究。 ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM def load_model(model_name): tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) return tokenizer, model tokenizer_grok, model_grok = load_model("xai/grok3") # Hypothetical loading process for Grok3 tokenizer_deepseek, model_deepseek = load_model("deepseek/deepseek-large") text_input = "Explain the difference between Grok3 and DeepSeek." input_ids_grok = tokenizer_grok.encode(text_input, return_tensors='pt') output_grok = model_grok.generate(input_ids_grok) print(tokenizer_grok.decode(output_grok[0], skip_special_tokens=True)) ``` 上述代码片段展示了如何加载两个不同的LLM进行测试生成响应的过程。需要注意的是,“xai/grok3”仅为示意名称,因为目前官方并未发布具体的Hugging Face Models Hub路径链接地址。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值