cv2.GaussianBlur()函数

高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。

 在OpenCV中,实现高斯滤波的函数是cv2.GaussianBlur(),该函数的语法格式是:

         dst=cv2.GaussianBlur(src,ksize,sigmaX,sigmaY,borderType)

        式中:

        ● dst是返回值,表示进行高斯滤波后得到的处理结果。

        ● src 是需要处理的图像,即原始图像。它能够有任意数量的通道,并能对各个通道 独立处理。图像深度应该是CV_8U、CV_16U、CV_16S、CV_32F 或者 CV_64F中的一 种。

        ● ksize 是滤波核的大小。滤波核大小是指在滤波处理过程中其邻域图像的高度和宽 度。需要注意,滤波核的值必须是奇数。

        ● sigmaX 是卷积核在水平方向上(X 轴方向)的标准差,其控制的是权重比例。

        ● sigmaY是卷积核在垂直方向上(Y轴方向)的标准差。如果将该值设置为0,则只采用sigmaX的值

        如果sigmaX和sigmaY都是0,则通过ksize.width和ksize.height计算得到。其中:

        sigmaX=0.3×[(ksize.width-1)×0.5-1] +0.8 

        sigmaY=0.3×[(ksize.height-1)×0.5-1]+0.8        

         ● borderType是边界样式,该值决定了以何种方式处理边界。一般情况下,不需要考虑该值,直接采用默认值即可。 在该函数中,sigmaY和borderType是可选参数。sigmaX是必选参数,但是可以将该参数设置为0,让函数自己去计算sigmaX的具体值。

        函数cv2.GaussianBlur()的常用形式为:
        dst=cv2.GaussianBlur(src,ksize,0,0)

例:

GaussianBlur=cv2.GaussianBlur(img,(9,9),3)

————————————————
版权声明:本文为CSDN博主「Justth.」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_49478668/article/details/123431541

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值