描述
输入一个长度为 n 字符串,打印出该字符串中字符的所有排列,你可以以任意顺序返回这个字符串数组。
例如输入字符串ABC,则输出由字符A,B,C所能排列出来的所有字符串ABC,ACB,BAC,BCA,CBA和CAB。
数据范围:n < 10n<10
要求:空间复杂度 O(n!)O(n!),时间复杂度 O(n!)O(n!)
输入描述:
输入一个字符串,长度不超过10,字符只包括大小写字母。
示例1
输入:"ab"
返回值:["ab","ba"]
说明:返回["ba","ab"]也是正确的
示例2
输入:"aab"
返回值:["aab","aba","baa"]
示例3
输入:"abc"
返回值:["abc","acb","bac","bca","cab","cba"]
示例4
输入:""
返回值:[]
思路:递归法
如图:
如图所示的全排列可以发现,
对于这个排列,我们是固定A不动,然后交换B与C,从而得到"ABC" 和 "ACB"
同理,对于"BAC"、"BCA" 、"CAB"和"CBA"
是同样道理
递归三部曲:
- 递归函数的功能:
dfs(int pos, string s)
, 表示固定字符串s
的pos
下标的字符s[pos]
- 递归终止条件:当
pos+1 == s.length()
的时候,终止,表示对最后一个字符进行固定,也就说明,完成了一次全排列 - 下一次递归:
dfs(pos+1, s)
, 很显然,下一次递归就是对字符串的下一个下标进行固定
但是,对于"ABB"
来说,就会有重复,如图
所以,我们用set
可以进行去重,并且可以达到按字母顺序排序。
class Solution {
public:
void perm(int pos, string s, set<string> &ret) {
if (pos+1 == s.length()) {
ret.insert(s);
return;
}
// for循环和swap的含义:对于“ABC”,
// 第一次'A' 与 'A'交换,字符串为"ABC", pos为0, 相当于固定'A'
// 第二次'A' 与 'B'交换,字符串为"BAC", pos为0, 相当于固定'B'
// 第三次'A' 与 'C'交换,字符串为"CBA", pos为0, 相当于固定'C'
for (int i = pos; i < s.length(); ++i) {
swap(s[pos], s[i]);
perm(pos+1, s, ret);
swap(s[pos], s[i]);
// 回溯的原因:比如第二次交换后是"BAC",需要回溯到"ABC"
// 然后进行第三次交换,才能得到"CBA"
}
}
vector<string> Permutation(string s) {
if (s.empty()) return {};
set<string> ret;
perm(0, s, ret);
return vector<string>({ret.begin(), ret.end()});
}
};