Spring Cache
缓存是实际工作中非常常用的一种提高性能的方法, 我们会在许多场景下来使用缓存。
本文通过一个简单的例子进行展开,通过对比我们原来的自定义缓存和 spring 的基于注释的 cache 配置方法,展现了 spring cache 的强大之处,然后介绍了其基本的原理,扩展点和使用场景的限制。通过阅读本文,你应该可以短时间内掌握 spring 带来的强大缓存技术,在很少的配置下即可给既有代码提供缓存能力。
概述
Spring 3.1 引入了激动人心的基于注释(annotation)的缓存(cache)技术,它本质上不是一个具体的缓存实现方案(例如EHCache 或者 OSCache),而是一个对缓存使用的抽象,通过在既有代码中添加少量它定义的各种 annotation,即能够达到缓存方法的返回对象的效果。
特点如下:
1. 通过少量的配置 annotation 注释即可使得既有代码支持缓存
2. 支持开箱即用 Out-Of-The-Box,即不用安装和部署额外第三方组件即可使用缓存
3. 支持 Spring Express Language,能使用对象的任何属性或者方法来定义缓存的 key 和 condition
4. 支持 AspectJ,并通过其实现任何方法的缓存支持
5. 支持自定义 key 和自定义缓存管理者,具有相当的灵活性和扩展性
我们以前如何自己实现缓存的呢
这里先展示一个完全自定义的缓存实现,即不用任何第三方的组件来实现某种对象的内存缓存。
场景如下:
对一个账号查询方法做缓存,以账号名称为 key,账号对象为 value,当以相同的账号名称查询账号的时候,直接从缓存中返回结果,否则更新缓存。账号查询服务还支持 reload 缓存(即清空缓存)
首先定义一个实体类:账号类,具备基本的 id 和 name 属性,且具备 getter 和 setter 方法
public class Account {
private int id;
private String name;
public Account(String name) {
this.name = name;
}
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
}
然后定义一个缓存管理器,这个管理器负责实现缓存逻辑,支持对象的增加、修改和删除,支持值对象的泛型。如下:
import com.google.common.collect.Maps;
import java.util.Map;
/**
* @author wenchao.ren
* 2015/1/5.
*/
public class CacheContext<T> {
private Map<String, T> cache = Maps.newConcurrentMap();
public T get(String key){
return cache.get(key);
}
public void addOrUpdateCache(String key,T value) {
cache.put(key, value);
}
// 根据 key 来删除缓存中的一条记录
public void evictCache(String key) {
if(cache.containsKey(key)) {
cache.remove(key);
}
}
// 清空缓存中的所有记录
public void evictCache() {
cache.clear();
}
}
好,现在我们有了实体类和一个缓存管理器,还需要一个提供账号查询的服务类,此服务类使用缓存管理器来支持账号查询缓存,如下:
import com.google.common.base.Optional;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Service;
import javax.annotation.Resource;
/**
* @author wenchao.ren
* 2015/1/5.
*/
@Service
public class AccountService1 {
private final Logger logger = LoggerFactory.getLogger(AccountService1.class);
@Resource
private CacheContext<Account> accountCacheContext;
public Account getAccountByName(String accountName) {
Account result = accountCacheContext.get(accountName);
if (result != null) {
logger.info("get from cache... {}", accountName);
return result;
}
Optional<Account> accountOptional = getFromDB(accountName);
if (!accountOptional.isPresent()) {
throw new IllegalStateException(String.format("can not find account by account name : [%s]", accountName));
}
Account account = accountOptional.get();
accountCacheContext.addOrUpdateCache(accountName, account);
return account;
}
public void reload() {
accountCacheContext.evictCache();
}
private Optional<Account> getFromDB(String accountName) {
logger.info("real querying db... {}", accountName);
//Todo query data from database
return Optional.fromNullable(new Account(accountName));
}
}
现在我们开始写一个测试类,用于测试刚才的缓存是否有效
import org.junit.Before;
import org.junit.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import static org.junit.Assert.*;
public class AccountService1Test {
private AccountService1 accountService1;
private final Logger logger = LoggerFactory.getLogger(AccountService1Test.class);
@Before
public void setUp() throws Exception {
ClassPathXmlApplicationContext context = new ClassPathXmlApplicationContext("applicationContext1.xml");
accountService1 = context.getBean("accountService1", AccountService1.class);
}
@Test
public void testInject(){
assertNotNull(accountService1);
}
@Test
public void testGetAccountByName() throws Exception {
accountService1.getAccountByName("accountName");
accountService1.getAccountByName("accountName");
accountService1.reload();
logger.info("after reload ....");
accountService1.getAccountByName("accountName");
accountService1.getAccountByName("accountName");
}
}
执行结果
首先从数据库查询,然后直接返回缓存中的结果,重置缓存后,应该先从数据库查询,然后返回缓存中的结果. 查看程序运行的日志如下:
00:53:17.166 [main] INFO c.r.s.cache.example1.AccountService - real querying db... accountName
00:53:17.168 [main] INFO c.r.s.cache.example1.AccountService - get from cache... accountName
00:53:17.168 [main] INFO c.r.s.c.example1.AccountServiceTest - after reload ....
00:53:17.168 [main] INFO c.r.s.cache.example1.AccountService - real querying db... accountName
00:53:17.169 [main] INFO c.r.s.cache.example1.AccountService - get from cache... accountName
可以看出我们的缓存起效了,但是这种自定义的缓存方案有如下劣势:
1. 缓存代码和业务代码耦合度太高,如上面的例子,AccountService 中的 getAccountByName()方法中有了太多缓存的逻辑,不便于维护和变更
2. 不灵活,这种缓存方案不支持按照某种条件的缓存,比如只有某种类型的账号才需要缓存,这种需求会导致代码的变更
3. 缓存的存储这块写的比较死,不能灵活的切换为使用第三方的缓存模块
spring实现Cache
修改操作类
import com.google.common.base.Optional;
import com.rollenholt.spring.cache.example1.Account;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.cache.annotation.CacheEvict;
import org.springframework.cache.annotation.Cacheable;
import org.springframework.stereotype.Service;
/**
* @author wenchao.ren
* 2015/1/5.
*/
@Service
public class AccountService3 {
private final Logger logger = LoggerFactory.getLogger(AccountService3.class);
// 使用了一个缓存名叫 accountCache
@Cacheable(value="accountCache")
public Account getAccountByName(String accountName) {
// 方法内部实现不考虑缓存逻辑,直接实现业务
logger.info("real querying account... {}", accountName);
Optional<Account> accountOptional = getFromDB(accountName);
if (!accountOptional.isPresent()) {
throw new IllegalStateException(String.format("can not find account by account name : [%s]", accountName));
}
return accountOptional.get();
}
@CacheEvict(value="accountCache",key="#account.getName()")
public void updateAccount(Account account) {
updateDB(account);
}
@CacheEvict(value="accountCache",allEntries=true)
public void reload() {
}
private void updateDB(Account account) {
logger.info("real update db...{}", account.getName());
}
private Optional<Account> getFromDB(String accountName) {
logger.info("real querying db... {}", accountName);
//Todo query data from database
return Optional.fromNullable(new Account(accountName));
}
}
@Cacheable(value="accountCache")
当调用这个方法前,就看缓存中是否有这个名字的数据,如果有就用缓存,如果没有就调用方法
@CacheEvict(value="accountCache",key="#account.getName()")
将某一条数据请出缓存
@CacheEvict(value="accountCache",allEntries=true)
清除所有缓存
需要缓存,需要加上下面配置
<context:component-scan base-package="com.rollenholt.spring.cache"/>
<context:annotation-config/>
<cache:annotation-driven/>
<bean id="cacheManager" class="org.springframework.cache.support.SimpleCacheManager">
<property name="caches">
<set>
<bean class="org.springframework.cache.concurrent.ConcurrentMapCacheFactoryBean">
<property name="name" value="default"/>
</bean>
<bean class="org.springframework.cache.concurrent.ConcurrentMapCacheFactoryBean">
<property name="name" value="accountCache"/>
</bean>
</set>
</property>
</bean>
关键配置
<cache:annotation-driven />
这个配置项缺省使用了一个名字叫 cacheManager 的缓存管理器,这个缓存管理器有一个 spring 的缺省实现,即 org.springframework.cache.support.SimpleCacheManager,这个缓存管理器实现了我们刚刚自定义的缓存管理器的逻辑,它需要配置一个属性 caches,即此缓存管理器管理的缓存集合,除了缺省的名字叫 default 的缓存,我们还自定义了一个名字叫 accountCache 的缓存,使用了缺省的内存存储方案 ConcurrentMapCacheFactoryBean,它是基于 java.util.concurrent.ConcurrentHashMap 的一个内存缓存实现方案。
@Cacheable、@CachePut、@CacheEvict 注释介绍
1. @Cacheable 主要针对方法配置,能够根据方法的请求参数对其结果进行缓存
2. @CachePut 主要针对方法配置,能够根据方法的请求参数对其结果进行缓存,和 @Cacheable 不同的是,它每次都会触发真实方法的调用
3. @CachEvict 主要针对方法配置,能够根据一定的条件对缓存进行清空
实现原理
其实spring缓存也是通过AOP实现的,所以应该多学习AOP。
spring cache的缺点
1. 不能持久化
2. 不能适应分布式系统的情况
3. 高可用性差
解决方法
使用第三方缓存系统,如:
1. EHCache、OSCache
2. memcache、redis
参考:
http://www.cnblogs.com/rollenholt/p/4202631.html