PathRAG 也是一种新型 Graph-based RAG 方法,通过检索索引图中的关键关系路径,减少噪声并优化 LLM 提示。其核心创新在于基于流的剪枝算法和路径为基础的提示策略,特别适用于捕捉复杂数据集中的关系。(其实可以看做相比GraphRAG假如剪枝算法和路径提示策略,减少噪声并提升性能)
三种Graph-based RAG对比总结(PathRAG、GraphRAG、LightRAG):
• PathRAG:通过从索引图中检索关键的关系路径来减少冗余信息。PathRAG使用基于流的剪枝算法来识别和提取最相关的路径,从而减少噪声并提高生成答案的质量。(专注于关系路径的检索,通过流式剪枝算法识别最可靠的关系路径,并将这些路径转换为文本形式用于提示生成模型。这种方法能够更好地捕捉节点之间的关系。)
• GraphRAG:通常通过社区检测算法对图进行分割,并从子社区中逐步聚合信息。这种方法可能会包含大量冗余信息,因为其使用了所有相关社区的信息。(主要依赖于社区检测和信息聚合,可能无法有效利用复杂的关系路径。)
• LightRAG:采用双阶段检索框架,从局部和全局级别检索相关信息。虽然这种方法提高了检索效率,但仍然可能包含不必要的信息。(虽然也使用图结构,但其检索过程更侧重于快速检索,可能没有深入探索关系路径的潜力。)
下面再来看看PathRAG的方法。
PathRAG方法
PathRAG 的方法论分为三个阶段,具体如下:
1. 节点检索
- 从用户查询 q q q 中使用 LLM 提取关键词,记为 K q K_q Kq。
- 通过密集向量匹配(使用余弦相似度)检索相关节点,将节点和关键词编码为嵌入 X V X_V XV 和 X q X_q Xq。
- 检索 N N N 个相关节点, N N N 可选值包括 {10, 20, 30, 40, 50, 60},结果子集为 V q ⊆ V V_q \subseteq V Vq⊆V,其中 V V V 是索引图的节点集。
2. 路径检索
- 使用基于流的剪枝算法,从 V q V_q Vq 中的节点对 v start , v end v_{\text{start}}, v_{\text{end}} vstart,vend 提取关键关系路径,考虑距离感知。
- 资源传播公式为:
S ( v i ) = ∑ v j ∈ N ( ⋅ , v i ) α ⋅ S ( v j ) ∣ N ( v j , ⋅ ) ∣ S(v_i) = \sum_{v_j \in N(\cdot, v_i)} \frac{\alpha \cdot S(v_j)}{|N(v_j, \cdot)|} S(vi)=vj∈N(⋅,vi)∑∣N(vj,⋅)∣α⋅S(vj)
其中 α \alpha α 是衰减率,可选值包括 {0.6, 0.7, 0.8, 0.9, 1.0}; N ( v i , ⋅ ) N(v_i, \cdot) N(vi,⋅) 和 N ( ⋅ , v i ) N(\cdot, v_i) N(⋅,vi) 分别是指向和来自 v i v_i vi 的邻居节点集。 - 引入早期停止策略,当 S ( v i ) ∣ N ( v i , ⋅ ) ∣ < θ \frac{S(v_i)}{|N(v_i, \cdot)|} < \theta ∣N(vi,⋅)∣S(vi)<θ 时停止,实验中 θ = 0.05 \theta = 0.05 θ=0.05。
- 路径可靠性计算为:
S ( P ) = 1 ∣ E P ∣ ∑ v i ∈ V P S ( v i ) S(P) = \frac{1}{|E_P|} \sum_{v_i \in V_P} S(v_i) S(P)=∣EP∣1vi∈VP∑S(vi)
其中 ∣ E P ∣ |E_P| ∣EP∣ 是路径 P P P 中的边数, V P , E P V_P, E_P VP,EP 分别是路径中的节点和边集。 - 按可靠性 S ( P ) S(P) S(P) 排序,保留前 K K K 个路径, K K K 可选值包括 {5, 10, 15, 20, 25}。
- 算法复杂度为 O ( N 2 ( 1 − α ) θ ) O(\frac{N^2}{(1-\alpha)\theta}) O((1−α)θN2),其中 N ≤ 60 N \leq 60 N≤60,索引图节点数 ∣ V ∣ ∼ 1 0 4 |V| \sim 10^4 ∣V∣∼104,计算效率较高。
3. 答案生成
-
将选定路径转化为文本形式,路径文本通过连接节点和边块生成:
t P = concat ( [ ⋯ ; t v i ; t e i ; t v i + 1 ; ⋯ ] ) t_P = \text{concat}([\cdots; t_{v_i}; t_{e_i}; t_{v_{i+1}}; \cdots]) tP=concat([⋯;tvi;tei;tvi+1;⋯]) -
按可靠性升序排列路径,提示为:
这种排序策略解决了“中间丢失”问题,确保 LLM 关注最相关信息(LLM使用 “GPT-4o-mini” 作为所有 LLM 组件,索引图与 GraphRAG相同。)。
实验结果
参考文献:PathRAG: Pruning Graph-based Retrieval Augmented Generation with Relational Paths,https://arXiv.org/abs/2502.14902)
code:https://github.com/BUPT-GAMMA/PathRAG