vLLM部署推理及相关重要参数

本文详细介绍了如何在VLLM项目中使用LLM类进行文本生成,重点讲解了SamplingParams中的Temperature和top_p参数,以及LLM类中的关键参数如model路径、并行处理设置和内存管理。

部署示例代码

from vllm import LLM, SamplingParams

prompts = [
    "Hello, my name is",
    "The president of the United States is",
    "The capital of France is",
    "The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

llm = LLM(model="qwen/Qwen-7B-Chat", revision="v1.1.8", trust_remote_code=True)

outputs = llm.generate(prompts, sampling_params)

for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

SamplingParams()重要传参

  • temperature:Temperature 参数是文本生成模型中用于控制生成文本的随机性和创造性的一个重要的超参数。Temperature参数通常设置为 0.1 到 1.0 之间。
  • top_k:模型预测的前k个最可能的下一个词。
  • max_tokens:模型生成的最大长度。
  • stop:生成模型停止生成的符号。

LLM()中重要传参

  • model:LLM模型路径。
  • tensor_parallel_size:并行处理的大小。
  • gpu_memory_utilization:默认为0.9, cpu_swap_space默认4个G。若gpu_memory_utilization参数过小(分配的内存大小低于模型使用内存)或者过大(接近1.0)时,代码会崩溃。
  • request_rate:请求速率

参考文献

https://github.com/vllm-project/vllm
https://docs.vllm.ai/en/latest/index.html

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值