高数习题9.2(上)

  1. 求下列微分方程的通积分:
    (1) d y d x = 1 + y 2 ( 1 + x 2 ) x y \frac{dy}{dx}=\frac{1+y^2}{(1+x^2)xy} dxdy=(1+x2)xy1+y2
    (2) a ( x d y d x + 2 y ) = x y d y d x ( a > 0 ) a(x\frac{dy}{dx}+2y)=xy\frac{dy}{dx}(a>0) a(xdxdy+2y)=xydxdy(a>0)
    (3) 1 + x 2 d y − 1 − y 2 d x = 0 \sqrt{1+x^2}dy-\sqrt{1-y^2}dx=0 1+x2 dy1y2 dx=0
    (4) ( x + 2 y ) d x + ( 2 x − 3 y ) d y = 0 (x+2y)dx+(2x-3y)dy=0 (x+2y)dx+(2x3y)dy=0
    (5) ( 3 x + 5 y ) d x + ( 4 x + 6 y ) d y = 0 (3x+5y)dx+(4x+6y)dy=0 (3x+5y)dx+(4x+6y)dy=0
    (6) 2 x d z − 2 z d x = x 2 + 4 z 2 d x ( x > 0 ) 2xdz-2zdx=\sqrt{x^2+4z^2}dx(x>0) 2xdz2zdx=x2+4z2 dx(x>0)
    (7) ( 2 x 2 + y 2 ) d x + ( 2 x y + 3 y 2 ) d y = 0 (2x^2+y^2)dx+(2xy+3y^2)dy=0 (2x2+y2)dx+(2xy+3y2)dy=0
    (8) y ′ = ( x + y + 2 ) 2 y'=(x+y+2)^2 y=(x+y+2)2
    (9) ( 2 x + 3 y − 1 ) d x + ( 4 x + 6 y − 5 ) d y = 0 (2x+3y-1)dx+(4x+6y-5)dy=0 (2x+3y1)dx+(4x+6y5)dy=0
    (10) ( 2 x − y + 4 ) d y + ( x − 2 y + 5 ) d x = 0 (2x-y+4)dy+(x-2y+5)dx=0 (2xy+4)dy+(x2y+5)dx=0
    解:
    (1)
    d y d x = 1 + y 2 ( 1 + x 2 ) x y y 1 + y 2 d y = 1 ( 1 + x 2 ) x d x 1 2 l n ∣ 1 + y 2 ∣ = 1 2 ( l n ∣ x 2 ∣ − l n ∣ x 2 + 1 ∣ ) + C ( 1 + x 2 ) ( 1 + y 2 ) = C x 2 \begin{aligned} \frac{dy}{dx}&=\frac{1+y^2}{(1+x^2)xy} \\ \frac{y}{1+y^2}dy&=\frac{1}{(1+x^2)x}dx \\ \frac{1}{2}ln|1+y^2|&=\frac{1}{2}(ln|x^2|-ln|x^2+1|)+C\\ (1+x^2)(1+y^2) &= Cx^2 \\ \end{aligned} dxdy1+y2ydy21ln1+y2(1+x2)(1+y2)=(1+x2)xy1+y2=(1+x2)x1dx=21(lnx2lnx2+1)+C=Cx2
    (2)
    a ( x d y d x + 2 y ) = x y d y d x ( 1 − a y ) d y = 2 a x d x y − a l n ∣ y ∣ = 2 a l n ∣ x ∣ + C e y = C y a x 2 a x 2 y = C e y a \begin{aligned} a(x\frac{dy}{dx}+2y)&=xy\frac{dy}{dx} \\ (1-\frac{a}{y})dy&=\frac{2a}{x}dx \\ y-aln|y|&=2aln|x|+C\\ e^y&=Cy^ax^{2a} \\ x^2y&=Ce^{\frac{y}{a}}\\ \end{aligned} a(xdxdy+2y)(1ya)dyyalnyeyx2y=xydxdy=x2adx=2alnx+C=Cyax2a=Ceay
    (3)
    1 + x 2 d y − 1 − y 2 d x = 0 1 1 − y 2 d y = 1 1 + x 2 d x a r c s i n y = l n ∣ x 2 + 1 + x ∣ + C a r c s i n y = l n C ( x 2 + 1 + x ) \begin{aligned} \sqrt{1+x^2}dy-\sqrt{1-y^2}dx&=0 \\ \frac{1}{\sqrt{1-y^2}}dy&=\frac{1}{\sqrt{1+x^2}}dx \\ arcsiny&=ln|\sqrt{x^2+1}+x|+C\\ arcsiny&=lnC(\sqrt{x^2+1}+x)\\ \end{aligned} 1+x2 dy1y2 dx1y2 1dyarcsinyarcsiny=0=1+x2 1dx=lnx2+1 +x+C=lnC(x2+1 +x)
    (4)
    ( x + 2 y ) d x + ( 2 x − 3 y ) d y = 0 x d x + 2 y d x + 2 x d y − 3 y d y = 0 d x 2 2 + 2 d ( x y ) − 3 d y 2 2 = 0 x 2 + 4 x y − 3 y 2 = C \begin{aligned} (x+2y)dx+(2x-3y)dy&=0 \\ xdx+2ydx+2xdy-3ydy&=0\\ \frac{dx^2}{2}+2d(xy)-\frac{3dy^2}{2}&=0\\ x^2+4xy-3y^2&=C\\ \end{aligned} (x+2y)dx+(2x3y)dyxdx+2ydx+2xdy3ydy2dx2+2d(xy)23dy2x2+4xy3y2=0=0=0=C
    (5)
    ( 3 x + 5 y ) d x + ( 4 x + 6 y ) d y = 0 d y d x = − 3 x + 5 y 4 x + 6 y 令 u = y x , 则 d y d x = u + x d u d x , 原 式 : u + x d u d x = − 3 + 5 u 4 + 6 u − 3 2 x d x = 2 + 3 u ( 2 u + 1 ) ( u + 1 ) d u − 3 2 l n ∣ x ∣ = 1 2 l n ∣ 2 u + 1 ∣ + l n ∣ u + 1 ∣ + C ( 2 y + x ) ( y + x ) 2 = C \begin{aligned} (3x+5y)dx+(4x+6y)dy&=0 \\ \frac{dy}{dx}&=-\frac{3x+5y}{4x+6y}\\ 令u=\frac{y}{x},则\frac{dy}{dx}=u+x\frac{du}{dx},原式:\\ u+x\frac{du}{dx}&=-\frac{3+5u}{4+6u}\\ -\frac{3}{2x}dx&=\frac{2+3u}{(2u+1)(u+1)}du\\ -\frac{3}{2}ln|x|&=\frac{1}{2}ln|2u+1|+ln|u+1|+C\\ (2y+x)(y+x)^2&=C\\ \end{aligned} (3x+5y)dx+(4x+6y)dydxdyu=xy,dxdy=u+xdxdu,:u+xdxdu2x3dx23lnx(2y+x)(y+x)2=0=4x+6y3x+5y=4+6u3+5u=(2u+1)(u+1)2+3udu=21ln2u+1+lnu+1+C=C
    (6)
    2 x d z − 2 z d x = x 2 + 4 z 2 d x ( x > 0 ) 2 d z d x − 2 z x = 1 + 4 z 2 x 2 令 u = z x , 则 d z d x = u + x d u d x , 原 式 : 2 ( u + x d u d x ) − 2 u = 1 + 4 u 2 1 x d x = 2 1 + 4 u 2 d u l n ∣ x ∣ = l n ( 4 u 2 + 1 + 2 u ) + C 2 u + 4 u 2 + 1 = C x 2 z + x 2 + 4 z 2 = C x 2 \begin{aligned} 2xdz-2zdx&=\sqrt{x^2+4z^2}dx(x>0)\\ 2\frac{dz}{dx}-\frac{2z}{x}&=\sqrt{1+\frac{4z^2}{x^2}}\\ 令u=\frac{z}{x},则\frac{dz}{dx}=u+x\frac{du}{dx},原式:\\ 2(u+x\frac{du}{dx})-2u&=\sqrt{1+4u^2}\\ \frac{1}{x}dx&=\frac{2}{\sqrt{1+4u^2}}du\\ ln|x|&=ln(\sqrt{4u^2+1}+2u)+C\\ 2u+\sqrt{4u^2+1}&=Cx\\ 2z+\sqrt{x^2+4z^2}&=Cx^2\\ \end{aligned} 2xdz2zdx2dxdzx2zu=xz,dxdz=u+xdxdu,:2(u+xdxdu)2ux1dxlnx2u+4u2+1 2z+x2+4z2 =x2+4z2 dx(x>0)=1+x24z2 =1+4u2 =1+4u2 2du=ln(4u2+1 +2u)+C=Cx=Cx2
    (7)
    ( 2 x 2 + y 2 ) d x + ( 2 x y + 3 y 2 ) d y = 0 2 x 2 d x + y 2 d x + 2 x y d y + 3 y 2 d y = 0 2 3 d x 3 + d ( x y 2 ) + d y 3 = 0 2 x 3 + 3 x y 2 + 3 y 3 = C \begin{aligned} (2x^2+y^2)dx+(2xy+3y^2)dy&=0\\ 2x^2dx+y^2dx+2xydy+3y^2dy&=0\\ \frac{2}{3}dx^3+d(xy^2)+dy^3&=0\\ 2x^3+3xy^2+3y^3&=C\\ \end{aligned} (2x2+y2)dx+(2xy+3y2)dy2x2dx+y2dx+2xydy+3y2dy32dx3+d(xy2)+dy32x3+3xy2+3y3=0=0=0=C
    (8)
    y ′ = ( x + y + 2 ) 2 令 z = x + y + 2 , 则 d z = d x + d y , 原 式 : d z d x − 1 = z 2 1 z 2 + 1 = d x a r c t a n z = x + C a r c t a n ( x + y + 2 ) = x + C \begin{aligned} y'&=(x+y+2)^2\\ 令z=x+y+2,则dz=dx+dy,原式:\\ \frac{dz}{dx}-1&=z^2\\ \frac{1}{z^2+1}&=dx\\ arctanz&=x+C\\ arctan(x+y+2)&=x+C\\ \end{aligned} yz=x+y+2,dz=dx+dy,:dxdz1z2+11arctanzarctan(x+y+2)=(x+y+2)2=z2=dx=x+C=x+C
    (9)
    ( 2 x + 3 y − 1 ) d x + ( 4 x + 6 y − 5 ) d y = 0 d y d x = − 2 x + 3 y − 1 4 x + 6 y − 5 令 z = 2 x + 3 y , 则 d z = 2 d x + 3 d y , 原 式 : d z d x = 2 − 3 ( z − 1 ) 2 z − 5 2 z − 5 z − 7 d z = d x 2 z + 9 l n ∣ z − 7 ∣ = x + C x + 2 y + 3 l n ∣ 2 x + 3 y − 7 ∣ = C \begin{aligned} (2x+3y-1)dx+(4x+6y-5)dy&=0\\ \frac{dy}{dx}&=-\frac{2x+3y-1}{4x+6y-5}\\ 令z=2x+3y,则dz=2dx+3dy,原式:\\ \frac{dz}{dx}&=2-\frac{3(z-1)}{2z-5}\\ \frac{2z-5}{z-7}dz&=dx\\ 2z+9ln|z-7|&=x+C\\ x+2y+3ln|2x+3y-7|&=C\\ \end{aligned} (2x+3y1)dx+(4x+6y5)dydxdyz=2x+3y,dz=2dx+3dy,:dxdzz72z5dz2z+9lnz7x+2y+3ln2x+3y7=0=4x+6y52x+3y1=22z53(z1)=dx=x+C=C
    (10)
    ( 2 x − y + 4 ) d y + ( x − 2 y + 5 ) d x = 0 d y d x = − x − 2 y + 5 2 x − y + 4 d y d x = − ( x + 1 ) − 2 ( y − 2 ) 2 ( x + 1 ) − ( y − 2 ) 令 u = x + 1 , v = y − 2 , 则 d u = d x , d v = d y , 原 式 : d v d u = − u − 2 v 2 u − v 令 z = v u , 则 d v = u d z + z d u 原 式 : u d z d u + z = − 1 − 2 z 2 − z 1 u d u = z − 2 1 − z 2 d z l n ∣ u ∣ = 1 2 l n ∣ z − 1 ∣ − 3 2 l n ∣ z + 1 ∣ + C z − 1 = C ( z + 1 ) 3 u 2 v − u = C ( v + u ) 3 y − x − 3 = C ( x + y − 1 ) 3 \begin{aligned} (2x-y+4)dy+(x-2y+5)dx&=0\\ \frac{dy}{dx}&=-\frac{x-2y+5}{2x-y+4}\\ \frac{dy}{dx}&=-\frac{(x+1)-2(y-2)}{2(x+1)-(y-2)}\\ 令u=x+1,v=y-2,则du=dx,dv=dy,原式:\\ \frac{dv}{du}&=-\frac{u-2v}{2u-v}\\ 令z=\frac{v}{u},则dv=udz+zdu原式:\\ u\frac{dz}{du}+z=-\frac{1-2z}{2-z}\\ \frac{1}{u}du&=\frac{z-2}{1-z^2}dz\\ ln|u|&=\frac{1}{2}ln|z-1|-\frac{3}{2}ln|z+1|+C\\ z-1&=C(z+1)^3u^2\\ v-u&=C(v+u)^3\\ y-x-3&=C(x+y-1)^3\\ \end{aligned} (2xy+4)dy+(x2y+5)dxdxdydxdyu=x+1,v=y2,du=dx,dv=dy,:dudvz=uv,dv=udz+zdu:ududz+z=2z12zu1dulnuz1vuyx3=0=2xy+4x2y+5=2(x+1)(y2)(x+1)2(y2)=2uvu2v=1z2z2dz=21lnz123lnz+1+C=C(z+1)3u2=C(v+u)3=C(x+y1)3
  2. 求下列初值问题的解:
    (1) d x y + 4 d y x = 0 , y ( 4 ) = 2 \frac{dx}{y}+\frac{4dy}{x}=0,y(4)=2 ydx+x4dy=0,y(4)=2
    (2) x d x + y e − x d y = 0 , y ( 0 ) = 1 xdx+ye^{-x}dy=0,y(0)=1 xdx+yexdy=0,y(0)=1
    (3) 1 + x 2 d y d x = x y 3 , y ( 0 ) = 1 \sqrt{1+x^2}\frac{dy}{dx}=xy^3,y(0)=1 1+x2 dxdy=xy3,y(0)=1
    (4) x d y d x + 2 y = s i n x , y ( π ) = 1 π x\frac{dy}{dx}+2y=sinx,y(\pi)=\frac{1}{\pi} xdxdy+2y=sinx,y(π)=π1
    解:
    (1)
    d x y + 4 d y x = 0 4 y d y = − x d x 2 y 2 = − 1 2 x 2 + C 把 y ( 4 ) = 2 代 入 , 得 到 C = 16 4 y 2 + x 2 = 32 \begin{aligned} \frac{dx}{y}+\frac{4dy}{x}&=0\\ 4ydy&=-xdx\\ 2y^2&=-\frac{1}{2}x^2+C\\ 把y(4)=2代入,得到C=16\\ 4y^2+x^2&=32\\ \end{aligned} ydx+x4dy4ydy2y2y(4)=2C=164y2+x2=0=xdx=21x2+C=32
    (2)
    x d x + y e − x d y = 0 y d y = − x e x d x 1 2 y 2 = ( 1 − x ) e x + C 把 y ( 0 ) = 1 代 入 , 得 到 C = − 1 2 2 ( x − 1 ) e x + 1 + y 2 = 0 \begin{aligned} xdx+ye^{-x}dy&=0\\ ydy&=-xe^xdx\\ \frac{1}{2}y^2&=(1-x)e^x+C\\ 把y(0)=1代入,得到C=-\frac{1}{2}\\ 2(x-1)e^x+1+y^2&=0\\ \end{aligned} xdx+yexdyydy21y2y(0)=1C=212(x1)ex+1+y2=0=xexdx=(1x)ex+C=0
    (3)
    1 + x 2 d y d x = x y 3 1 y 3 d y = x 1 + x 2 d x − 1 2 y 2 = 1 + x 2 + C 把 y ( 0 ) = 1 代 入 , 得 到 C = − 3 2 1 y 2 + 2 1 + x 2 = 3 \begin{aligned} \sqrt{1+x^2}\frac{dy}{dx}&=xy^3\\ \frac{1}{y^3}dy&=\frac{x}{\sqrt{1+x^2}}dx\\ -\frac{1}{2y^2}&=\sqrt{1+x^2}+C\\ 把y(0)=1代入,得到C=-\frac{3}{2}\\ \frac{1}{y^2}+2\sqrt{1+x^2}&=3\\ \end{aligned} 1+x2 dxdyy31dy2y21y(0)=1C=23y21+21+x2 =xy3=1+x2 xdx=1+x2 +C=3
    (4)
    x d y d x + 2 y = s i n x d y d x + 2 x y = s i n x x \begin{aligned} x\frac{dy}{dx}+2y&=sinx\\ \frac{dy}{dx}+\frac{2}{x}y&=\frac{sinx}{x}\\ \end{aligned} xdxdy+2ydxdy+x2y=sinx=xsinx
    解齐次方程 d y d x + 2 x y = 0 \frac{dy}{dx}+\frac{2}{x}y=0 dxdy+x2y=0 y = 1 x 2 y=\frac{1}{x^2} y=x21
    y = u ( x ) 1 x 2 y=u(x)\frac{1}{x^2} y=u(x)x21代入原方程得:
    u ′ ( x ) x 2 = s i n x x u ( x ) = s i n x − x c o s x + C y = s i n x − x c o s x + C x 2 把 y ( π ) = 1 π 代 入 , 得 到 C = 0 y = s i n x − x c o s x x 2 \begin{aligned} \frac{u'(x)}{x^2}&=\frac{sinx}{x}\\ u(x)&=sinx-xcosx+C\\ y&=\frac{sinx-xcosx+C}{x^2}\\ 把y(\pi)=\frac{1}{\pi}代入,得到C=0\\ y&=\frac{sinx-xcosx}{x^2}\\ \end{aligned} x2u(x)u(x)yy(π)=π1C=0y=xsinx=sinxxcosx+C=x2sinxxcosx+C=x2sinxxcosx
  3. 求下列微分方程的通解:
    (1) x d y d x − y = ( x − 1 ) e x x\frac{dy}{dx}-y=(x-1)e^x xdxdyy=(x1)ex;
    (2) d y d x − 2 y x + 1 = ( x + 1 ) 5 2 \frac{dy}{dx}-\frac{2y}{x+1}=(x+1)^{\frac{5}{2}} dxdyx+12y=(x+1)25;
    (3) ( x + 1 ) d y d x − n y = e x ( x + 1 ) n + 1 (x+1)\frac{dy}{dx}-ny=e^x(x+1)^{n+1} (x+1)dxdyny=ex(x+1)n+1;
    (4) d y d x + 2 y = x e − x \frac{dy}{dx}+2y=xe^{-x} dxdy+2y=xex.
    解:
    (1)
    x d y d x − y = ( x − 1 ) e x d y d x − 1 x y = ( x − 1 ) e x x \begin{aligned} x\frac{dy}{dx}-y&=(x-1)e^x\\ \frac{dy}{dx}-\frac{1}{x}y&=\frac{(x-1)e^x}{x}\\ \end{aligned} xdxdyydxdyx1y=(x1)ex=x(x1)ex
    解齐次方程 d y d x − 1 x y = 0 \frac{dy}{dx}-\frac{1}{x}y=0 dxdyx1y=0 y = x y=x y=x
    y = u ( x ) x y=u(x)x y=u(x)x代入原方程得:
    u ′ ( x ) x = ( x − 1 ) e x x u ( x ) = e x x + C y = e x + C x \begin{aligned} u'(x)x&=\frac{(x-1)e^x}{x}\\ u(x)&=\frac{e^x}{x}+C\\ y&=e^x+Cx\\ \end{aligned} u(x)xu(x)y=x(x1)ex=xex+C=ex+Cx
    (2)
    d y d x − 2 y x + 1 = ( x + 1 ) 5 2 \begin{aligned} \frac{dy}{dx}-\frac{2y}{x+1}&=(x+1)^{\frac{5}{2}}\\ \end{aligned} dxdyx+12y=(x+1)25
    解齐次方程 d y d x − 2 y x + 1 = 0 \frac{dy}{dx}-\frac{2y}{x+1}=0 dxdyx+12y=0 y = ( x + 1 ) 2 y=(x+1)^2 y=(x+1)2
    y = u ( x ) ( x + 1 ) 2 y=u(x)(x+1)^2 y=u(x)(x+1)2代入原方程得:
    u ′ ( x ) ( x + 1 ) 2 = ( x + 1 ) 5 2 u ( x ) = 2 3 ( x + 1 ) 3 2 + C y = 2 3 ( x + 1 ) 7 2 + C ( x + 1 ) 2 \begin{aligned} u'(x)(x+1)^2&=(x+1)^{\frac{5}{2}}\\ u(x)&=\frac{2}{3}(x+1)^{\frac{3}{2}}+C\\ y&=\frac{2}{3}(x+1)^{\frac{7}{2}}+C(x+1)^2\\ \end{aligned} u(x)(x+1)2u(x)y=(x+1)25=32(x+1)23+C=32(x+1)27+C(x+1)2
    (3)
    ( x + 1 ) d y d x − n y = e x ( x + 1 ) n + 1 d y d x − n ( x + 1 ) y = e x ( x + 1 ) n \begin{aligned} (x+1)\frac{dy}{dx}-ny&=e^x(x+1)^{n+1}\\ \frac{dy}{dx}-\frac{n}{(x+1)}y&=e^x(x+1)^n\\ \end{aligned} (x+1)dxdynydxdy(x+1)ny=ex(x+1)n+1=ex(x+1)n
    解齐次方程 d y d x − n ( x + 1 ) y = 0 \frac{dy}{dx}-\frac{n}{(x+1)}y=0 dxdy(x+1)ny=0 y = ( x + 1 ) n y=(x+1)^n y=(x+1)n
    y = u ( x ) ( x + 1 ) n y=u(x)(x+1)^n y=u(x)(x+1)n代入原方程得:
    u ′ ( x ) ( x + 1 ) n = e x ( x + 1 ) n u ( x ) = e x + C y = ( e x + C ) ( x + 1 ) n \begin{aligned} u'(x)(x+1)^n&=e^x(x+1)^n\\ u(x)&=e^x+C\\ y&=(e^x+C)(x+1)^n\\ \end{aligned} u(x)(x+1)nu(x)y=ex(x+1)n=ex+C=(ex+C)(x+1)n
    (4)
    d y d x + 2 y = x e − x \begin{aligned} \frac{dy}{dx}+2y&=xe^{-x}\\ \end{aligned} dxdy+2y=xex
    解齐次方程 d y d x + 2 y = 0 \frac{dy}{dx}+2y=0 dxdy+2y=0 y = e − 2 x y=e^{-2x} y=e2x
    y = u ( x ) e − 2 x y=u(x)e^{-2x} y=u(x)e2x代入原方程得:
    u ′ ( x ) e − 2 x = x e − x u ( x ) = x e x − e x + C y = C e − 2 x + ( x − 1 ) e − x \begin{aligned} u'(x)e^{-2x}&=xe^{-x}\\ u(x)&=xe^x-e^x+C\\ y&=Ce^{-2x}+(x-1)e^{-x}\\ \end{aligned} u(x)e2xu(x)y=xex=xexex+C=Ce2x+(x1)ex
  4. 求下列微分方程的通积分:
    (1) y ′ + y x = y 3 y'+\frac{y}{x}=y^3 y+xy=y3;
    (2) x y ′ + y = 2 x y xy'+y=2\sqrt{xy} xy+y=2xy ;
    (3) n x y ′ + 2 y = x y n + 1 nxy'+2y=xy^{n+1} nxy+2y=xyn+1;
    (4) 3 x y ′ − y − 3 x y 4 l n x = 0 3xy'-y-3xy^4lnx=0 3xyy3xy4lnx=0;
    (5) y ′ − 3 x y − x y 2 = 0 y'-3xy-xy^2=0 y3xyxy2=0.
    解:
    (1)
    y ′ + y x = y 3 y − 3 d y d x + y − 2 x = 1 − 1 2 d y − 2 d x + y − 2 x = 1 令 z = y − 2 , 则 方 程 为 : − 1 2 d z d x + z x = 1 d z d x − 2 z x = − 2 \begin{aligned} y'+\frac{y}{x}&=y^3\\ y^{-3}\frac{dy}{dx}+\frac{y^{-2}}{x}&=1\\ -\frac{1}{2}\frac{dy^{-2}}{dx}+\frac{y^{-2}}{x}&=1\\ 令z=y^{-2},则方程为:\\ -\frac{1}{2}\frac{dz}{dx}+\frac{z}{x}&=1\\ \frac{dz}{dx}-\frac{2z}{x}&=-2\\ \end{aligned} y+xyy3dxdy+xy221dxdy2+xy2z=y2,:21dxdz+xzdxdzx2z=y3=1=1=1=2
    解齐次方程 d z d x − 2 z x = 0 \frac{dz}{dx}-\frac{2z}{x}=0 dxdzx2z=0 z = x 2 z=x^2 z=x2
    z = u ( x ) x 2 z=u(x)x^2 z=u(x)x2代入原方程得:
    u ′ ( x ) x 2 = − 2 u ( x ) = 2 x + C z = 2 x + C x 2 C x 2 y 2 + 2 x y 2 − 1 = 0 \begin{aligned} u'(x)x^2&=-2\\ u(x)&=\frac{2}{x}+C\\ z&=2x+Cx^2\\ Cx^2y^2+2xy^2-1&=0\\ \end{aligned} u(x)x2u(x)zCx2y2+2xy21=2=x2+C=2x+Cx2=0
    (2)
    x y ′ + y = 2 x y y − 1 2 d y d x + y 1 2 x = 2 x − 1 2 2 d y 1 2 d x + y 1 2 x = 2 x − 1 2 令 z = y 1 2 , 则 方 程 为 : 2 d z d x + z x = 2 x − 1 2 d z d x + z 2 x = x − 1 2 \begin{aligned} xy'+y=2\sqrt{xy}\\ y^{-\frac{1}{2}}\frac{dy}{dx}+\frac{y^{\frac{1}{2}}}{x}&=2x^{-\frac{1}{2}}\\ 2\frac{dy^{\frac{1}{2}}}{dx}+\frac{y^{\frac{1}{2}}}{x}&=2x^{-\frac{1}{2}}\\ 令z=y^{\frac{1}{2}},则方程为:\\ 2\frac{dz}{dx}+\frac{z}{x}&=2x^{-\frac{1}{2}}\\ \frac{dz}{dx}+\frac{z}{2x}&=x^{-\frac{1}{2}}\\ \end{aligned} xy+y=2xy y21dxdy+xy212dxdy21+xy21z=y21,:2dxdz+xzdxdz+2xz=2x21=2x21=2x21=x21
    解齐次方程 d z d x + z 2 x = 0 \frac{dz}{dx}+\frac{z}{2x}=0 dxdz+2xz=0 z = x − 1 2 z=x^{-\frac{1}{2}} z=x21
    z = u ( x ) x − 1 2 z=u(x)x^{-\frac{1}{2}} z=u(x)x21代入原方程得:
    u ′ ( x ) x − 1 2 = x − 1 2 u ( x ) = x + C z = x 1 2 + C x − 1 2 x − x y = C \begin{aligned} u'(x)x^{-\frac{1}{2}}&=x^{-\frac{1}{2}}\\ u(x)&=x+C\\ z&=x^{\frac{1}{2}}+Cx^{-\frac{1}{2}}\\ x-\sqrt{xy}&=C\\ \end{aligned} u(x)x21u(x)zxxy =x21=x+C=x21+Cx21=C
    (3)
    n x y ′ + 2 y = x y n + 1 n y − ( n + 1 ) d y d x + 2 y − n x = 1 − d y − n d x + 2 y − n x = 1 令 z = y − n , 则 方 程 为 : − d z d x + 2 z x = 1 d z d x − 2 z x = − 1 \begin{aligned} nxy'+2y&=xy^{n+1}\\ ny^{-(n+1)}\frac{dy}{dx}+\frac{2y^{-n}}{x}&=1\\ -\frac{dy^{-n}}{dx}+\frac{2y^{-n}}{x}&=1\\ 令z=y^{-n},则方程为:\\ -\frac{dz}{dx}+\frac{2z}{x}&=1\\ \frac{dz}{dx}-\frac{2z}{x}&=-1\\ \end{aligned} nxy+2yny(n+1)dxdy+x2yndxdyn+x2ynz=yn,:dxdz+x2zdxdzx2z=xyn+1=1=1=1=1
    解齐次方程 d z d x − 2 z x = 0 \frac{dz}{dx}-\frac{2z}{x}=0 dxdzx2z=0 z = x 2 z=x^2 z=x2
    z = u ( x ) x 2 z=u(x)x^2 z=u(x)x2代入原方程得:
    u ′ ( x ) x 2 = − 1 u ( x ) = 1 x + C z = x + C x 2 C x 2 y n + x y n − 1 = 0 \begin{aligned} u'(x)x^2&=-1\\ u(x)&=\frac{1}{x}+C\\ z&=x+Cx^2\\ Cx^2y^n+xy^n-1&=0\\ \end{aligned} u(x)x2u(x)zCx2yn+xyn1=1=x1+C=x+Cx2=0
    (4)
    3 x y ′ − y − 3 x y 4 l n x = 0 3 y − 4 d y d x − y − 3 x = 3 l n x − d y − 3 d x − y − 3 x = 3 l n x 令 z = y − 3 , 则 方 程 为 : − d z d x − z x = 3 l n x d z d x + z x = − 3 l n x \begin{aligned} 3xy'-y-3xy^4lnx&=0\\ 3y^{-4}\frac{dy}{dx}-\frac{y^{-3}}{x}&=3lnx\\ -\frac{dy^{-3}}{dx}-\frac{y^{-3}}{x}&=3lnx\\ 令z=y^{-3},则方程为:\\ -\frac{dz}{dx}-\frac{z}{x}&=3lnx\\ \frac{dz}{dx}+\frac{z}{x}&=-3lnx\\ \end{aligned} 3xyy3xy4lnx3y4dxdyxy3dxdy3xy3z=y3,:dxdzxzdxdz+xz=0=3lnx=3lnx=3lnx=3lnx
    解齐次方程 d z d x + z x = 0 \frac{dz}{dx}+\frac{z}{x}=0 dxdz+xz=0 z = x − 1 z=x^{-1} z=x1
    z = u ( x ) x − 1 z=u(x)x^{-1} z=u(x)x1代入原方程得:
    u ′ ( x ) x − 1 = − 3 l n x u ( x ) = − 3 2 x 2 l n x + 3 4 x 2 + C z = − 3 2 x l n x + 3 4 x + C x − 1 x y − 3 + 3 4 x 2 ( 2 l n x − 1 ) = C \begin{aligned} u'(x)x^{-1}&=-3lnx\\ u(x)&=-\frac{3}{2}x^2lnx+\frac{3}{4}x^2+C\\ z&=-\frac{3}{2}xlnx+\frac{3}{4}x+Cx^{-1}\\ xy^{-3}+\frac{3}{4}x^2(2lnx-1)&=C\\ \end{aligned} u(x)x1u(x)zxy3+43x2(2lnx1)=3lnx=23x2lnx+43x2+C=23xlnx+43x+Cx1=C
    (5)
    y ′ − 3 x y − x y 2 = 0 y − 2 d y d x − 3 x y − 1 = x − d y − 1 d x − 3 x y − 1 = x 令 z = y − 1 , 则 方 程 为 : − d z d x − 3 x z = x d z d x + 3 x z = − x \begin{aligned} y'-3xy-xy^2&=0\\ y^{-2}\frac{dy}{dx}-3xy^{-1}&=x\\ -\frac{dy^{-1}}{dx}-3xy^{-1}&=x\\ 令z=y^{-1},则方程为:\\ -\frac{dz}{dx}-3xz&=x\\ \frac{dz}{dx}+3xz&=-x\\ \end{aligned} y3xyxy2y2dxdy3xy1dxdy13xy1z=y1,:dxdz3xzdxdz+3xz=0=x=x=x=x
    解齐次方程 d z d x + 3 x z = 0 \frac{dz}{dx}+3xz=0 dxdz+3xz=0 z = e − 3 2 x 2 z=e^{-\frac{3}{2}x^2} z=e23x2
    z = u ( x ) e − 3 2 x 2 z=u(x)e^{-\frac{3}{2}x^2} z=u(x)e23x2代入原方程得:
    u ′ ( x ) e − 3 2 x 2 = − x u ( x ) = − 1 3 e 3 2 x 2 + C z = − 1 3 + C e − 3 2 x 2 ( 1 + 3 y ) e 3 2 x 2 = C \begin{aligned} u'(x)e^{-\frac{3}{2}x^2}&=-x\\ u(x)&=-\frac{1}{3}e^{\frac{3}{2}x^2}+C\\ z&=-\frac{1}{3}+Ce^{-\frac{3}{2}x^2}\\ (1+\frac{3}{y})e^{\frac{3}{2}x^2}&=C\\ \end{aligned} u(x)e23x2u(x)z(1+y3)e23x2=x=31e23x2+C=31+Ce23x2=C
  5. 将下列微分方程化成线性微分方程:
    (1) d y d x = x 2 + y 2 2 y \frac{dy}{dx}=\frac{x^2+y^2}{2y} dxdy=2yx2+y2;
    (2) d y d x = y x + y 2 \frac{dy}{dx}=\frac{y}{x+y^2} dxdy=x+y2y;
    (3) 3 x y 2 d y d x + y 3 + x 3 = 0 3xy^2\frac{dy}{dx}+y^3+x^3=0 3xy2dxdy+y3+x3=0;
    (4) d y d x = 1 c o s y + x t a n y \frac{dy}{dx}=\frac{1}{cosy}+xtany dxdy=cosy1+xtany.
    解:
    (1) 令 z = y 2 z=y^2 z=y2,则 d z d x = x 2 + z \frac{dz}{dx}=x^2+z dxdz=x2+z
    (2) 将x看作y的函数,则 d x d y = x y + y \frac{dx}{dy}=\frac{x}{y}+y dydx=yx+y
    (3) 令 z = y 3 z=y^3 z=y3,则 d z d x + z x + x 2 = 0 \frac{dz}{dx}+\frac{z}{x}+x^2=0 dxdz+xz+x2=0
    (4) 令 z = s i n y z=siny z=siny,则 d z d x = 1 + x z \frac{dz}{dx}=1+xz dxdz=1+xz
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值