高数习题9.2(下)

  1. 一曲线在点(x,y)处的斜率等于 2 y + x + 1 x \frac{2y+x+1}{x} x2y+x+1,且通过点(1,0),试求此曲线的表达式.
    解:
    { d y d x = 2 y + x + 1 x y ( 1 ) = 0 \begin{cases} \frac{dy}{dx} &= \frac{2y+x+1}{x}\\ y(1) &= 0 \\ \end{cases} {dxdyy(1)=x2y+x+1=0
    d y d x = 2 y + x + 1 x d y d x − 2 y x = 1 + 1 x \begin{aligned} \frac{dy}{dx} &= \frac{2y+x+1}{x}\\ \frac{dy}{dx} - \frac{2y}{x} &= 1+\frac{1}{x} \\ \end{aligned} dxdydxdyx2y=x2y+x+1=1+x1
    解齐次方程 d y d x − 2 y x = 0 \frac{dy}{dx} - \frac{2y}{x}=0 dxdyx2y=0 y = x 2 y=x^2 y=x2
    y = u ( x ) x 2 y=u(x)x^2 y=u(x)x2代入原方程得:
    u ′ ( x ) x 2 = 1 + 1 x u ( x ) = − 1 2 x 2 − 1 x + C y = − 1 2 − x + C x 2 把 y ( 1 ) = 0 代 入 , 得 到 C = 3 2 2 y = 3 x 2 − 2 x − 1 \begin{aligned} u'(x)x^2&=1+\frac{1}{x}\\ u(x)&=-\frac{1}{2x^2}-\frac{1}{x}+C\\ y&=-\frac{1}{2}-x+Cx^2\\ 把y(1)=0代入,得到C=\frac{3}{2}\\ 2y&=3x^2-2x-1\\ \end{aligned} u(x)x2u(x)yy(1)=0C=232y=1+x1=2x21x1+C=21x+Cx2=3x22x1
  2. 物体在冷却过程中的温度变化率与它本身的温度和环境之差成正比.今有一温度为95℃的物体,放入温度恒为15℃的房内,10分钟后温度降至55℃,问:需多长时间,使该物体的温度降至20℃.
    解:设t时刻的温度为u(t)℃,则:
    { d u d t = k ( u − 15 ) u ( 0 ) = 95 u ( 10 ) = 55 \begin{cases} \frac{du}{dt}&=k(u-15)\\ u(0)&=95\\ u(10)&=55\\ \end{cases} dtduu(0)u(10)=k(u15)=95=55
    d u d t = k ( u − 15 ) u ( t ) = C e k t + 15 把 u ( 0 ) = 95 和 u ( 10 ) = 55 代 入 , 得 到 C = 80 , k = − l n 2 10 u ( t ) = 15 + 80 ⋅ 2 − t 10 \begin{aligned} \frac{du}{dt}&=k(u-15)\\ u(t)&=Ce^{kt}+15\\ 把u(0)&=95和u(10)=55代入,得到C=80,k=-\frac{ln2}{10}\\ u(t)&=15+80\cdot2^{-\frac{t}{10}}\\ \end{aligned} dtduu(t)u(0)u(t)=k(u15)=Cekt+15=95u(10)=55C=80,k=10ln2=15+80210t
    当u=20时,t=40,因此需要40分钟,该物体的温度降至20℃。
  3. 镭的衰变速率与其现存量成正比.经测定,一块镭经过1600年后,只剩原始量 R 0 R_0 R0的一半,问:1克镭经过一年后衰变多少毫克?
    解:设经过t年后,剩下量为R(t),则:
    { d R d t = k R R ( 0 ) = R 0 R ( 1600 ) = R 0 2 \begin{cases} \frac{dR}{dt}&=kR\\ R(0)&=R_0\\ R(1600)&=\frac{R_0}{2}\\ \end{cases} dtdRR(0)R(1600)=kR=R0=2R0
    d R d t = k R R ( t ) = C e k t 把 R ( 0 ) = R 0 和 R ( 1600 ) = R 0 2 代 入 , 得 到 C = R 0 , k = − l n 2 1600 u ( t ) = R 0 ⋅ 2 − t 1600 \begin{aligned} \frac{dR}{dt}&=kR\\ R(t)&=Ce^{kt}\\ 把R(0)&=R_0和R(1600)=\frac{R_0}{2}代入,得到C=R_0,k=-\frac{ln2}{1600}\\ u(t)&=R_0\cdot2^{-\frac{t}{1600}}\\ \end{aligned} dtdRR(t)R(0)u(t)=kR=Cekt=R0R(1600)=2R0C=R0,k=1600ln2=R021600t
    R 0 = 1 , t = 1 R_0=1,t=1 R0=1,t=1时, 1 − u ( 1 ) = 1 − 2 − 1 1600 ≈ 0.00044 1-u(1)=1-2^{-\frac{1}{1600}}\approx0.00044 1u(1)=12160010.00044,因此1克镭经过一年后衰变0.44毫克。
  4. 求解积分方程 ∫ 0 1 φ ( t x ) d t = n φ ( x ) \int_0^1\varphi(tx)dt=n\varphi(x) 01φ(tx)dt=nφ(x)其中 φ ( x ) \varphi(x) φ(x)为可微函数.
    解:
    ∫ 0 1 φ ( t x ) d t = n φ ( x ) 令 u = t x : ∫ 0 x φ ( u ) d u x = n φ ( x ) ∫ 0 x φ ( u ) d u = n x φ ( x ) 两 边 同 时 求 导 : φ ( x ) = n φ ( x ) + n x φ ′ ( x ) d φ φ = 1 − n n x d x φ ( x ) = C ∣ x ∣ 1 − n n \begin{aligned} \int_0^1\varphi(tx)dt&=n\varphi(x)\\ 令u=tx:\\ \int_0^x\varphi(u)d\frac{u}{x}&=n\varphi(x)\\ \int_0^x\varphi(u)du&=nx\varphi(x)\\ 两边同时求导:\\ \varphi(x)&=n\varphi(x)+nx\varphi'(x)\\ \frac{d\varphi}{\varphi}&=\frac{1-n}{nx}dx\\ \varphi(x)&=C|x|^{\frac{1-n}{n}}\\ \end{aligned} 01φ(tx)dtu=tx:0xφ(u)dxu0xφ(u)du:φ(x)φdφφ(x)=nφ(x)=nφ(x)=nxφ(x)=nφ(x)+nxφ(x)=nx1ndx=Cxn1n
  5. y 1 ( x ) y_1(x) y1(x) y 0 ( x ) y_0(x) y0(x)分别是线性非齐次方程与其对应的齐次方程的解,证明: y 1 ( x ) + y 0 ( x ) y_1(x)+y_0(x) y1(x)+y0(x)也是非齐次方程的解.
    证明:
    d y 1 d x + P ( x ) y 1 = Q ( x ) d y 0 d x + P ( x ) y 0 = 0 d y 1 d x + P ( x ) y 1 + d y 0 d x + P ( x ) y 0 = Q ( x ) d ( y 1 + y 0 ) d x + P ( x ) ( y 1 + y 0 ) = Q ( x ) \begin{aligned} \frac{dy_1}{dx}+P(x)y_1&=Q(x)\\ \frac{dy_0}{dx}+P(x)y_0&=0\\ \frac{dy_1}{dx}+P(x)y_1+\frac{dy_0}{dx}+P(x)y_0&=Q(x)\\ \frac{d(y_1+y_0)}{dx}+P(x)(y_1+y_0)&=Q(x)\\ \end{aligned} dxdy1+P(x)y1dxdy0+P(x)y0dxdy1+P(x)y1+dxdy0+P(x)y0dxd(y1+y0)+P(x)(y1+y0)=Q(x)=0=Q(x)=Q(x)
    所以, y 1 ( x ) + y 0 ( x ) y_1(x)+y_0(x) y1(x)+y0(x)也是非齐次方程的解。
  6. y 1 ( x ) , y 2 ( x ) y_1(x),y_2(x) y1(x),y2(x)是非齐次方程的两个解,证明: y 1 ( x ) − y 2 ( x ) y_1(x)-y_2(x) y1(x)y2(x)是对应的齐次方程的解.
    证明:
    d y 1 d x + P ( x ) y 1 = Q ( x ) d y 2 d x + P ( x ) y 2 = Q ( x ) d y 1 d x + P ( x ) y 1 − d y 2 d x − P ( x ) y 2 = 0 d ( y 1 − y 2 ) d x + P ( x ) ( y 1 − y 2 ) = 0 \begin{aligned} \frac{dy_1}{dx}+P(x)y_1&=Q(x)\\ \frac{dy_2}{dx}+P(x)y_2&=Q(x)\\ \frac{dy_1}{dx}+P(x)y_1-\frac{dy_2}{dx}-P(x)y_2&=0\\ \frac{d(y_1-y_2)}{dx}+P(x)(y_1-y_2)&=0\\ \end{aligned} dxdy1+P(x)y1dxdy2+P(x)y2dxdy1+P(x)y1dxdy2P(x)y2dxd(y1y2)+P(x)(y1y2)=Q(x)=Q(x)=0=0
    所以, y 1 ( x ) − y 2 ( x ) y_1(x)-y_2(x) y1(x)y2(x)是对应的齐次方程的解。
  7. 证明:线性非齐次方程的通解 y 1 ( x ) + C e − ∫ x 0 x P ( t ) d t y_1(x)+Ce^{-\int_{x_0}^xP(t)dt} y1(x)+Cex0xP(t)dt(其中C为任意常数)包含了其一切解.
    证明:我们对此可以转化成证明线性非齐次方程的任意一个解,都包含在函数族 y 1 ( x ) + C e − ∫ x 0 x P ( t ) d t y_1(x)+Ce^{-\int_{x_0}^xP(t)dt} y1(x)+Cex0xP(t)dt中.
    y ∗ ( x ) y^*(x) y(x)是线性非齐次方程的任意一个取定的解,则它满足方程 d y ∗ d x + P ( x ) y ∗ ≡ Q ( x ) \frac{dy^*}{dx}+P(x)y^*\equiv Q(x) dxdy+P(x)yQ(x)
    d y ∗ d x + P ( x ) y ∗ ≡ Q ( x ) e − ∫ x 0 x P ( t ) d t d y ∗ d x + P ( x ) e − ∫ x 0 x P ( t ) d t y ∗ ≡ e − ∫ x 0 x P ( t ) d t ( d y 1 ( x ) d x + P ( x ) y 1 ( x ) ) e − ∫ x 0 x P ( t ) d t d ( y ∗ ( x ) − y 1 ( x ) ) d x + P ( x ) e − ∫ x 0 x P ( t ) d t ( y ∗ ( x ) − y 1 ( x ) ) ≡ 0 d [ ( y ∗ ( x ) − y 1 ( x ) ) e − ∫ x 0 x P ( t ) d t ] ≡ 0 ( y ∗ ( x ) − y 1 ( x ) ) e − ∫ x 0 x P ( t ) d t ≡ C 0 y ∗ ( x ) ≡ C 0 e ∫ x 0 x P ( t ) d t + y 1 ( x ) \begin{aligned} \frac{dy^*}{dx}+P(x)y^*&\equiv Q(x)\\ e^{-\int_{x_0}^xP(t)dt}\frac{dy^*}{dx}+P(x)e^{-\int_{x_0}^xP(t)dt}y^*&\equiv e^{-\int_{x_0}^xP(t)dt}(\frac{dy_1(x)}{dx}+P(x)y_1(x))\\ e^{-\int_{x_0}^xP(t)dt}\frac{d(y^*(x)-y_1(x))}{dx}+P(x)e^{-\int_{x_0}^xP(t)dt}(y^*(x)-y_1(x))&\equiv0\\ d[(y^*(x)-y_1(x))e^{-\int_{x_0}^xP(t)dt}]&\equiv0\\ (y^*(x)-y_1(x))e^{-\int_{x_0}^xP(t)dt}&\equiv C_0\\ y^*(x)&\equiv C_0e^{\int_{x_0}^xP(t)dt}+y_1(x)\\ \end{aligned} dxdy+P(x)yex0xP(t)dtdxdy+P(x)ex0xP(t)dtyex0xP(t)dtdxd(y(x)y1(x))+P(x)ex0xP(t)dt(y(x)y1(x))d[(y(x)y1(x))ex0xP(t)dt](y(x)y1(x))ex0xP(t)dty(x)Q(x)ex0xP(t)dt(dxdy1(x)+P(x)y1(x))00C0C0ex0xP(t)dt+y1(x)
    这说明 y ∗ ( x ) y^*(x) y(x)包含在函数族 y 1 ( x ) + C e − ∫ x 0 x P ( t ) d t y_1(x)+Ce^{-\int_{x_0}^xP(t)dt} y1(x)+Cex0xP(t)dt中。
  8. 求解下列微分方程:
    (1) x 2 y ′ ′ = y ′ 2 x^2y''=y'^2 x2y=y2
    (2) y ′ 2 + 2 y y ′ ′ = 0 y'^2+2yy''=0 y2+2yy=0
    (3) y ′ ′ ( e x + 1 ) + y ′ = 0 y''(e^x+1)+y'=0 y(ex+1)+y=0
    (4) y ′ ′ ′ = 2 ( y ′ ′ − 1 ) c o t x y'''=2(y''-1)cotx y=2(y1)cotx
    解:
    (1)
    x 2 y ′ ′ = y ′ 2 令 z = y ′ , 则 : 当 z ≠ 0 : x 2 z ′ = z 2 z = x 1 + C 1 x y ′ = x 1 + C 1 x 当 C 1 ≠ 0 : y = x C 1 − l n ∣ C 1 x + 1 ∣ C 1 2 + C 2 C 1 x − C 1 2 y = l n ∣ C 1 x + 1 ∣ + C 2 当 C 1 = 0 : y ′ = x y = x 2 2 + C 当 z = 0 : y = C \begin{aligned} x^2y''&=y'^2\\ 令z=y',则:\\ 当z\neq0:\\ x^2z'&=z^2\\ z&=\frac{x}{1+C_1x}\\ y'&=\frac{x}{1+C_1x}\\ 当C_1\neq0:\\ y&=\frac{x}{C_1}-\frac{ln|C_1x+1|}{C_1^2}+C_2\\ C_1x-C_1^2y&=ln|C_1x+1|+C_2\\ 当C_1=0:\\ y'&=x\\ y&=\frac{x^2}{2}+C\\ 当z=0:\\ y&=C\\ \end{aligned} x2yz=y,:z=0:x2zzyC1=0:yC1xC12yC1=0:yyz=0:y=y2=z2=1+C1xx=1+C1xx=C1xC12lnC1x+1+C2=lnC1x+1+C2=x=2x2+C=C
    所以,解为 y = x C 1 − l n ∣ C 1 x + 1 ∣ C 1 2 + C 2 , y = x 2 2 + C , y = C y=\frac{x}{C_1}-\frac{ln|C_1x+1|}{C_1^2}+C_2,y=\frac{x^2}{2}+C,y=C y=C1xC12lnC1x+1+C2,y=2x2+C,y=C
    (2)
    y ′ 2 + 2 y y ′ ′ = 0 令 p = y ′ , 则 : p 2 + 2 y p d p d y = 0 当 p ≠ 0 : p = C 1 y − 1 2 d y d x = C 1 y − 1 2 2 3 y 3 2 = C 1 x + C 2 y = C 1 ( x + C 2 ) 2 3 当 p = 0 , 则 : y = C \begin{aligned} y'^2+2yy''&=0\\ 令p=y',则:\\ p^2+2yp\frac{dp}{dy}&=0\\ 当p\neq0:\\ p&=C_1y^{-\frac{1}{2}}\\ \frac{dy}{dx}&=C_1y^{-\frac{1}{2}}\\ \frac{2}{3}y^{\frac{3}{2}}&=C_1x+C_2\\ y&=C_1(x+C_2)^{\frac{2}{3}}\\ 当p=0,则:\\ y&=C\\ \end{aligned} y2+2yyp=y,:p2+2ypdydpp=0:pdxdy32y23yp=0,:y=0=0=C1y21=C1y21=C1x+C2=C1(x+C2)32=C
    所以,解为 y = C 1 ( x + C 2 ) 2 3 , y = C y=C_1(x+C_2)^{\frac{2}{3}},y=C y=C1(x+C2)32,y=C
    (3)
    y ′ ′ ( e x + 1 ) + y ′ = 0 令 z = y ′ , 则 : 当 z ≠ 0 : z ′ ( e x + 1 ) + z = 0 z = C 1 ( 1 + 1 e x ) y ′ = C 1 ( 1 + 1 e x ) y = C 1 ( x − e − x ) + C 2 当 z = 0 : y = C \begin{aligned} y''(e^x+1)+y'&=0\\ 令z=y',则:\\ 当z\neq0:\\ z'(e^x+1)+z&=0\\ z&=C_1(1+\frac{1}{e^x})\\ y'&=C_1(1+\frac{1}{e^x})\\ y&=C_1(x-e^{-x})+C_2\\ 当z=0:\\ y&=C\\ \end{aligned} y(ex+1)+yz=y,:z=0:z(ex+1)+zzyyz=0:y=0=0=C1(1+ex1)=C1(1+ex1)=C1(xex)+C2=C
    所以,解为 y = C 1 ( x − e − x ) + C 2 y=C_1(x-e^{-x})+C_2 y=C1(xex)+C2
    (4)
    y ′ ′ ′ = 2 ( y ′ ′ − 1 ) c o t x 令 z = y ′ ′ , 则 : 当 z ≠ 1 : z ′ = 2 ( z − 1 ) c o t x z = C 1 s i n 2 x + 1 y ′ ′ = C 1 s i n 2 x + 1 y ′ = C 1 4 ( 2 x − s i n 2 x ) + x + C 2 y = C 1 8 ( 2 x 2 + c o s 2 x ) + x 2 2 + C 2 x + C 3 y = C 1 c o s 2 x + ( 1 2 + 2 C 1 ) x 2 + C 2 x + C 3 当 z = 1 : y ′ = x + C 1 y = 1 2 x 2 + C 1 x + C 2 \begin{aligned} y'''&=2(y''-1)cotx\\ 令z=y'',则:\\ 当z\neq1:\\ z'&=2(z-1)cotx\\ z&=C_1sin^2x+1\\ y''&=C_1sin^2x+1\\ y'&=\frac{C_1}{4}(2x-sin2x)+x+C_2\\ y&=\frac{C_1}{8}(2x^2+cos2x)+\frac{x^2}{2}+C_2x+C_3\\ y&=C_1cos2x+(\frac{1}{2}+2C_1)x^2+C_2x+C_3\\ 当z=1:\\ y'&=x+C_1\\ y&=\frac{1}{2}x^2+C_1x+C_2\\ \end{aligned} yz=y,:z=1:zzyyyyz=1:yy=2(y1)cotx=2(z1)cotx=C1sin2x+1=C1sin2x+1=4C1(2xsin2x)+x+C2=8C1(2x2+cos2x)+2x2+C2x+C3=C1cos2x+(21+2C1)x2+C2x+C3=x+C1=21x2+C1x+C2
    所以,解为 y = C 1 c o s 2 x + ( 1 2 + 2 C 1 ) x 2 + C 2 x + C 3 y=C_1cos2x+(\frac{1}{2}+2C_1)x^2+C_2x+C_3 y=C1cos2x+(21+2C1)x2+C2x+C3
  9. 判断下列方程是否是全微分方程,若是,求出其通积分.
    (1) ( 3 x 2 + 4 y ) d x + ( 2 x + 1 ) d y = 0 (3x^2+4y)dx+(2x+1)dy=0 (3x2+4y)dx+(2x+1)dy=0
    (2) ( x + 2 y ) d x + ( 2 x − y ) d y = 0 (x+2y)dx+(2x-y)dy=0 (x+2y)dx+(2xy)dy=0
    (3) e y d x + ( x e y − 2 y ) d y = 0 e^ydx+(xe^y-2y)dy=0 eydx+(xey2y)dy=0
    (4) ( 1 + x x 2 + y 2 ) d x + ( − 1 + x 2 + y 2 ) y d y = 0 (1+x\sqrt{x^2+y^2})dx+(-1+\sqrt{x^2+y^2})ydy=0 (1+xx2+y2 )dx+(1+x2+y2 )ydy=0
    (5) ( x + 2 y ) d x + ( 2 x + 3 y ) d y = 0 (x+2y)dx+(2x+3y)dy=0 (x+2y)dx+(2x+3y)dy=0
    (6) ( a x − b y ) d x + ( b x − c y ) d y = 0 ( b ≠ 0 ) (ax-by)dx+(bx-cy)dy=0(b\neq0) (axby)dx+(bxcy)dy=0(b=0)
    (7) ( y e x + 2 e x + y 2 ) d x + ( e x + 2 x y ) = 0 (ye^x+2e^x+y^2)dx+(e^x+2xy)=0 (yex+2ex+y2)dx+(ex+2xy)=0
    (8) ( a x 2 + b y 2 ) d x + l x y d y = 0 ( a , b , l 为 常 数 ) (ax^2+by^2)dx+lxydy=0(a,b,l为常数) (ax2+by2)dx+lxydy=0(a,b,l)
    解:
    (1)
    因为 ∂ ( 2 x + 1 ) ∂ x − ∂ ( 3 x 2 + 4 y ) ∂ y = − 2 ≠ 0 \frac{\partial(2x+1)}{\partial x}-\frac{\partial(3x^2+4y)}{\partial y}=-2\neq0 x(2x+1)y(3x2+4y)=2=0,所以不是。
    (2)
    因为 ∂ ( 2 x − y ) ∂ x − ∂ ( x + 2 y ) ∂ y = 0 \frac{\partial(2x-y)}{\partial x}-\frac{\partial(x+2y)}{\partial y}=0 x(2xy)y(x+2y)=0,所以是。
    ( x + 2 y ) d x + ( 2 x − y ) d y = 0 x d x + 2 ( y d x + x d y ) − y d y = 0 1 2 d x 2 + 2 d ( x y ) − 1 2 d y 2 = 0 1 2 x 2 + 2 x y − 1 2 y 2 = C \begin{aligned} (x+2y)dx+(2x-y)dy&=0\\ xdx+2(ydx+xdy)-ydy&=0\\ \frac{1}{2}dx^2+2d(xy)-\frac{1}{2}dy^2&=0\\ \frac{1}{2}x^2+2xy-\frac{1}{2}y^2&=C\\ \end{aligned} (x+2y)dx+(2xy)dyxdx+2(ydx+xdy)ydy21dx2+2d(xy)21dy221x2+2xy21y2=0=0=0=C
    (3)
    因为 ∂ ( x e y − 2 y ) ∂ x − ∂ e y ∂ y = 0 \frac{\partial(xe^y-2y)}{\partial x}-\frac{\partial e^y}{\partial y}=0 x(xey2y)yey=0,所以是。
    u ( x , y ) = ∫ e y d x + φ ( y ) = x e y + φ ( y ) φ ( y ) = ∫ ( x e y − 2 y ) − ∂ ( x e y ) ∂ y d y = − y 2 + C u ( x , y ) = x e y − y 2 + C x e y − y 2 = C u(x,y)=\int e^ydx+\varphi(y)=xe^y+\varphi(y) \\ \varphi(y) = \int (xe^y-2y) - \frac{\partial (xe^y)}{\partial y}dy=-y^2+C \\ u(x,y)=xe^y-y^2+C\\ xe^y-y^2=C u(x,y)=eydx+φ(y)=xey+φ(y)φ(y)=(xey2y)y(xey)dy=y2+Cu(x,y)=xeyy2+Cxeyy2=C
    (4)
    因为 ∂ ( − 1 + x 2 + y 2 ) y ∂ x − ∂ ( 1 + x x 2 + y 2 ) ∂ y = 0 \frac{\partial(-1+\sqrt{x^2+y^2})y}{\partial x}-\frac{\partial(1+x\sqrt{x^2+y^2})}{\partial y}=0 x(1+x2+y2 )yy(1+xx2+y2 )=0,所以是。
    u ( x , y ) = ∫ ( 1 + x x 2 + y 2 ) d x + φ ( y ) = x + 1 3 ( x 2 + y 2 ) 3 2 + φ ( y ) φ ( y ) = ∫ ( − 1 + x 2 + y 2 ) y − ∂ ( x + 1 3 ( x 2 + y 2 ) 3 2 ) ∂ y d y = − 1 2 y 2 + C u ( x , y ) = x + 1 3 ( x 2 + y 2 ) 3 2 − 1 2 y 2 + C 1 3 ( x 2 + y 2 ) 3 2 + x − 1 2 y 2 = C u(x,y)=\int (1+x\sqrt{x^2+y^2})dx+\varphi(y)=x+\frac{1}{3}(x^2+y^2)^{\frac{3}{2}}+\varphi(y) \\ \varphi(y) = \int (-1+\sqrt{x^2+y^2})y - \frac{\partial (x+\frac{1}{3}(x^2+y^2)^{\frac{3}{2}})}{\partial y}dy=-\frac{1}{2}y^2+C \\ u(x,y)=x+\frac{1}{3}(x^2+y^2)^{\frac{3}{2}}-\frac{1}{2}y^2+C\\ \frac{1}{3}(x^2+y^2)^{\frac{3}{2}}+x-\frac{1}{2}y^2=C u(x,y)=(1+xx2+y2 )dx+φ(y)=x+31(x2+y2)23+φ(y)φ(y)=(1+x2+y2 )yy(x+31(x2+y2)23)dy=21y2+Cu(x,y)=x+31(x2+y2)2321y2+C31(x2+y2)23+x21y2=C
    (5)
    因为 ∂ ( 2 x + 3 y ) ∂ x − ∂ ( x + 2 y ) ∂ y = 0 \frac{\partial(2x+3y)}{\partial x}-\frac{\partial(x+2y)}{\partial y}=0 x(2x+3y)y(x+2y)=0,所以是。
    u ( x , y ) = ∫ ( x + 2 y ) d x + φ ( y ) = 1 2 x 2 + 2 x y + φ ( y ) φ ( y ) = ∫ ( 2 x + 3 y ) − ∂ ( 1 2 x 2 + 2 x y ) ∂ y d y = 3 2 y 2 + C u ( x , y ) = 1 2 x 2 + 2 x y + 3 2 y 2 + C x 2 + 4 x y + 3 y 2 = C u(x,y)=\int (x+2y)dx+\varphi(y)=\frac{1}{2}x^2+2xy+\varphi(y) \\ \varphi(y) = \int (2x+3y) - \frac{\partial (\frac{1}{2}x^2+2xy)}{\partial y}dy=\frac{3}{2}y^2+C \\ u(x,y)=\frac{1}{2}x^2+2xy+\frac{3}{2}y^2+C\\ x^2+4xy+3y^2=C u(x,y)=(x+2y)dx+φ(y)=21x2+2xy+φ(y)φ(y)=(2x+3y)y(21x2+2xy)dy=23y2+Cu(x,y)=21x2+2xy+23y2+Cx2+4xy+3y2=C
    (6)
    因为 ∂ ( b x − c y ) ∂ x − ∂ ( a x − b y ) ∂ y = 2 b ≠ 0 \frac{\partial(bx-cy)}{\partial x}-\frac{\partial(ax-by)}{\partial y}=2b\neq0 x(bxcy)y(axby)=2b=0,所以不是。
    (7)
    因为 ∂ ( e x + 2 x y ) ∂ x − ∂ ( y e x + 2 e x + y 2 ) ∂ y = 0 \frac{\partial(e^x+2xy)}{\partial x}-\frac{\partial(ye^x+2e^x+y^2)}{\partial y}=0 x(ex+2xy)y(yex+2ex+y2)=0,所以是。
    u ( x , y ) = ∫ ( y e x + 2 e x + y 2 ) d x + φ ( y ) = ( y + 2 ) e x + x y 2 + φ ( y ) φ ( y ) = ∫ ( e x + 2 x y ) − ∂ ( ( y + 2 ) e x + x y 2 ) ∂ y d y = C u ( x , y ) = ( y + 2 ) e x + x y 2 + C ( y + 2 ) e x + x y 2 = C u(x,y)=\int (ye^x+2e^x+y^2)dx+\varphi(y)=(y+2)e^x+xy^2+\varphi(y) \\ \varphi(y) = \int (e^x+2xy) - \frac{\partial ((y+2)e^x+xy^2)}{\partial y}dy=C \\ u(x,y)=(y+2)e^x+xy^2+C\\ (y+2)e^x+xy^2=C u(x,y)=(yex+2ex+y2)dx+φ(y)=(y+2)ex+xy2+φ(y)φ(y)=(ex+2xy)y((y+2)ex+xy2)dy=Cu(x,y)=(y+2)ex+xy2+C(y+2)ex+xy2=C
    (8)
    ∂ l x y ∂ x − ∂ ( a x 2 + b y 2 ) ∂ y = l y − 2 b y \frac{\partial lxy}{\partial x}-\frac{\partial(ax^2+by^2)}{\partial y}=ly-2by xlxyy(ax2+by2)=ly2by
    l ≠ 2 b l\neq 2b l=2b时,不是。
    l = 2 b l=2b l=2b时,是。
    u ( x , y ) = ∫ ( a x 2 + b y 2 ) d x + φ ( y ) = 1 3 a x 3 + b x y 2 + φ ( y ) φ ( y ) = ∫ l x y − ∂ ( 1 3 a x 3 + b x y 2 ) ∂ y d y = C u ( x , y ) = 1 3 a x 3 + b x y 2 + C 1 3 a x 3 + b x y 2 = C u(x,y)=\int (ax^2+by^2)dx+\varphi(y)=\frac{1}{3}ax^3+bxy^2+\varphi(y) \\ \varphi(y) = \int lxy - \frac{\partial (\frac{1}{3}ax^3+bxy^2)}{\partial y}dy=C \\ u(x,y)=\frac{1}{3}ax^3+bxy^2+C\\ \frac{1}{3}ax^3+bxy^2=C u(x,y)=(ax2+by2)dx+φ(y)=31ax3+bxy2+φ(y)φ(y)=lxyy(31ax3+bxy2)dy=Cu(x,y)=31ax3+bxy2+C31ax3+bxy2=C
  10. 用观察法求下列各方程的积分因子,并求其通积分.
    (1) ( x + y ) 2 ( d x − d y ) = d x + d y ( x + y ≠ 0 ) (x+y)^2(dx-dy)=dx+dy(x+y\neq0) (x+y)2(dxdy)=dx+dy(x+y=0)
    (2) ( 1 + x 2 + y 2 + x ) d x + y d y = 0 (1+x^2+y^2+x)dx+ydy=0 (1+x2+y2+x)dx+ydy=0
    (3) s i n y d x + c o s y d y = 0 sinydx+cosydy=0 sinydx+cosydy=0
    (4) ( x 2 + y 2 + y ) d x − x d y = 0 (x^2+y^2+y)dx-xdy=0 (x2+y2+y)dxxdy=0
    (5) ( x d y + y d x ) 1 − y 2 + x y d y = 0 ( x y ≠ 0 , y ≠ ± 1 ) . (xdy+ydx)\sqrt{1-y^2}+xydy=0(xy\neq0,y\neq \pm1). (xdy+ydx)1y2 +xydy=0(xy=0,y=±1).
    解:
    (1)
    ( x + y ) 2 ( d x − d y ) = d x + d y d ( x − y ) = d ( x + y ) ( x + y ) 2 x − y + 1 x + y = C \begin{aligned} (x+y)^2(dx-dy)&=dx+dy\\ d(x-y)&=\frac{d(x+y)}{(x+y)^2}\\ x-y+\frac{1}{x+y}&=C\\ \end{aligned} (x+y)2(dxdy)d(xy)xy+x+y1=dx+dy=(x+y)2d(x+y)=C
    (2)
    ( 1 + x 2 + y 2 + x ) d x + y d y = 0 ( 1 + x 1 + x 2 + y 2 ) d x + y 1 + x 2 + y 2 d y = 0 d x + 1 2 d ( 1 + x 2 + y 2 ) 1 + x 2 + y 2 = 0 x + 1 2 l n ( 1 + x 2 + y 2 ) = C \begin{aligned} (1+x^2+y^2+x)dx+ydy&=0\\ (1+\frac{x}{1+x^2+y^2})dx+\frac{y}{1+x^2+y^2}dy&=0\\ dx+\frac{1}{2}\frac{d(1+x^2+y^2)}{1+x^2+y^2}&=0\\ x+\frac{1}{2}ln(1+x^2+y^2)&=C\\ \end{aligned} (1+x2+y2+x)dx+ydy(1+1+x2+y2x)dx+1+x2+y2ydydx+211+x2+y2d(1+x2+y2)x+21ln(1+x2+y2)=0=0=0=C
    (3)
    s i n y d x + c o s y d y = 0 e x s i n y d x + e x c o s y d y = 0 d ( e x s i n y ) = 0 e x s i n y = C \begin{aligned} sinydx+cosydy&=0\\ e^xsinydx+e^xcosydy&=0\\ d(e^xsiny)&=0\\ e^xsiny&=C\\ \end{aligned} sinydx+cosydyexsinydx+excosydyd(exsiny)exsiny=0=0=0=C
    (4)
    ( x 2 + y 2 + y ) d x − x d y = 0 ( 1 + y x 2 + y 2 ) d x − x x 2 + y 2 d y = 0 d x + d x y 1 + x 2 y 2 = 0 x + a r c t a n x y = C \begin{aligned} (x^2+y^2+y)dx-xdy&=0\\ (1+\frac{y}{x^2+y^2})dx-\frac{x}{x^2+y^2}dy&=0\\ dx+\frac{d\frac{x}{y}}{1+\frac{x^2}{y^2}}&=0\\ x+arctan\frac{x}{y}&=C\\ \end{aligned} (x2+y2+y)dxxdy(1+x2+y2y)dxx2+y2xdydx+1+y2x2dyxx+arctanyx=0=0=0=C
    (5)
    ( x d y + y d x ) 1 − y 2 + x y d y = 0 x d y + y d x x y + 1 1 − y 2 d y = 0 d ( x y ) x y + d a r c s i n y = 0 l n ∣ x y ∣ + a r c s i n y = C \begin{aligned} (xdy+ydx)\sqrt{1-y^2}+xydy&=0\\ \frac{xdy+ydx}{xy}+\frac{1}{\sqrt{1-y^2}}dy&=0\\ \frac{d(xy)}{xy}+darcsiny&=0\\ ln|xy|+arcsiny&=C\\ \end{aligned} (xdy+ydx)1y2 +xydyxyxdy+ydx+1y2 1dyxyd(xy)+darcsinylnxy+arcsiny=0=0=0=C
  11. 利用积分因子,求解下列微分方程:
    (1) x d x = ( 2 x y 3 d x + 3 x 2 y 2 d y ) 1 + x 2 xdx=(2xy^3dx+3x^2y^2dy)\sqrt{1+x^2} xdx=(2xy3dx+3x2y2dy)1+x2
    (2) ( x 2 + y ) d x − x d y = 0 (x^2+y)dx-xdy=0 (x2+y)dxxdy=0
    (3) y ( x + 1 ) d x + x ( y + 1 ) d y = 0 ( x y ≠ 0 ) y(x+1)dx+x(y+1)dy=0(xy\neq0) y(x+1)dx+x(y+1)dy=0(xy=0)
    (4) ( 3 x 2 y + 2 x y + y 3 ) d x + ( x 2 + y 2 ) d y = 0 (3x^2y+2xy+y^3)dx+(x^2+y^2)dy=0 (3x2y+2xy+y3)dx+(x2+y2)dy=0
    (5) 2 x y 3 d x + ( x 2 y 2 − 1 ) d y = 0 2xy^3dx+(x^2y^2-1)dy=0 2xy3dx+(x2y21)dy=0
    (6) e x d x + ( e x c o t y + 2 y c o s y ) d y = 0 e^xdx+(e^xcoty+2ycosy)dy=0 exdx+(excoty+2ycosy)dy=0
    解:
    (1)
    x d x = ( 2 x y 3 d x + 3 x 2 y 2 d y ) 1 + x 2 x 1 + x 2 d x = 2 x y 3 d x + 3 x 2 y 2 d y \begin{aligned} xdx&=(2xy^3dx+3x^2y^2dy)\sqrt{1+x^2}\\ \frac{x}{\sqrt{1+x^2}}dx&=2xy^3dx+3x^2y^2dy\\ \end{aligned} xdx1+x2 xdx=(2xy3dx+3x2y2dy)1+x2 =2xy3dx+3x2y2dy
    u ( x , y ) = ∫ ( 2 x y 3 ) d x + φ ( y ) = x 2 y 3 + φ ( y ) φ ( y ) = ∫ ( 3 x 2 y 2 ) − ∂ ( x 2 y 3 ) ∂ y d y = C u ( x , y ) = x 2 y 3 + C u(x,y)=\int (2xy^3)dx+\varphi(y)=x^2y^3+\varphi(y) \\ \varphi(y) = \int (3x^2y^2) - \frac{\partial (x^2y^3)}{\partial y}dy=C \\ u(x,y)=x^2y^3+C u(x,y)=(2xy3)dx+φ(y)=x2y3+φ(y)φ(y)=(3x2y2)y(x2y3)dy=Cu(x,y)=x2y3+C
    原式为:
    d 1 + x 2 = d ( x 2 y 3 ) 1 + x 2 − x 2 y 3 = C \begin{aligned} d\sqrt{1+x^2}&=d(x^2y^3)\\ \sqrt{1+x^2}-x^2y^3&=C\\ \end{aligned} d1+x2 1+x2 x2y3=d(x2y3)=C
    (2)
    ( x 2 + y ) d x − x d y = 0 d x + y d x − x d y x 2 = 0 d x − d y x = 0 x − y x = C \begin{aligned} (x^2+y)dx-xdy&=0\\ dx+\frac{ydx-xdy}{x^2}&=0\\ dx-d\frac{y}{x}&=0\\ x-\frac{y}{x}&=C\\ \end{aligned} (x2+y)dxxdydx+x2ydxxdydxdxyxxy=0=0=0=C
    (3)
    y ( x + 1 ) d x + x ( y + 1 ) d y = 0 d x + d y + y d x + x d y x y = 0 d x + d y + d ( x y ) x y = 0 x + y + l n ∣ x y ∣ = C \begin{aligned} y(x+1)dx+x(y+1)dy&=0\\ dx+dy+\frac{ydx+xdy}{xy}&=0\\ dx+dy+\frac{d(xy)}{xy}&=0\\ x+y+ln|xy|&=C\\ \end{aligned} y(x+1)dx+x(y+1)dydx+dy+xyydx+xdydx+dy+xyd(xy)x+y+lnxy=0=0=0=C
    (4)
    ( 3 x 2 y + 2 x y + y 3 ) d x + ( x 2 + y 2 ) d y = 0 ( 3 x 2 y d x + 2 x y d x + x 2 d y ) + ( y 3 d x + y 2 d y ) = 0 ( 3 x 2 y e 3 x d x + 2 x y e 3 x d x + x 2 e 3 x d y ) + ( y 3 e 3 x d x + y 2 e 3 x d y ) = 0 d ( x 2 y e 3 x ) + 1 3 d ( y 3 e 3 x ) = 0 x 2 y e 3 x + y 3 e 3 x 3 = C 3 x 2 y + y 3 = C e − 3 x \begin{aligned} (3x^2y+2xy+y^3)dx+(x^2+y^2)dy&=0\\ (3x^2ydx+2xydx+x^2dy)+(y^3dx+y^2dy)&=0\\ (3x^2ye^{3x}dx+2xye^{3x}dx+x^2e^{3x}dy)+(y^3e^{3x}dx+y^2e^{3x}dy)&=0\\ d(x^2ye^{3x})+\frac{1}{3}d(y^3e^{3x})&=0\\ x^2ye^{3x}+\frac{y^3e^{3x}}{3}&=C\\ 3x^2y+y^3&=Ce^{-3x}\\ \end{aligned} (3x2y+2xy+y3)dx+(x2+y2)dy(3x2ydx+2xydx+x2dy)+(y3dx+y2dy)(3x2ye3xdx+2xye3xdx+x2e3xdy)+(y3e3xdx+y2e3xdy)d(x2ye3x)+31d(y3e3x)x2ye3x+3y3e3x3x2y+y3=0=0=0=0=C=Ce3x
    (5)
    2 x y 3 d x + ( x 2 y 2 − 1 ) d y = 0 2 x y d x + x 2 d y − d y y 2 = 0 d ( x 2 y ) + d 1 y = 0 x 2 y + 1 y = C \begin{aligned} 2xy^3dx+(x^2y^2-1)dy&=0\\ 2xydx+x^2dy-\frac{dy}{y^2}&=0\\ d(x^2y)+d\frac{1}{y}&=0\\ x^2y+\frac{1}{y}&=C\\ \end{aligned} 2xy3dx+(x2y21)dy2xydx+x2dyy2dyd(x2y)+dy1x2y+y1=0=0=0=C
    (6)
    e x d x + ( e x c o t y + 2 y c o s y ) d y = 0 e x s i n y d x + ( e x c o s y + 2 y c o s y s i n y ) d y = 0 e x s i n y d x + e x c o s y d y + y s i n 2 y d y = 0 d ( e x s i n y ) + y s i n 2 y d y = 0 e x s i n y − 1 2 y c o s 2 y + 1 4 s i n 2 y = C \begin{aligned} e^xdx+(e^xcoty+2ycosy)dy&=0\\ e^xsinydx+(e^xcosy+2ycosysiny)dy&=0\\ e^xsinydx+e^xcosydy+ysin2ydy&=0\\ d(e^xsiny)+ysin2ydy&=0\\ e^xsiny-\frac{1}{2}ycos2y+\frac{1}{4}sin2y&=C\\ \end{aligned} exdx+(excoty+2ycosy)dyexsinydx+(excosy+2ycosysiny)dyexsinydx+excosydy+ysin2ydyd(exsiny)+ysin2ydyexsiny21ycos2y+41sin2y=0=0=0=0=C
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
4S店客户管理小程序-毕业设计,基于微信小程序+SSM+MySql开发,源码+数据库+论文答辩+毕业论文+视频演示 社会的发展和科学技术的进步,互联网技术越来越受欢迎。手机也逐渐受到广大人民群众的喜爱,也逐渐进入了每个用户的使用。手机具有便利性,速度快,效率高,成本低等优点。 因此,构建符合自己要求的操作系统是非常有意义的。 本文从管理员、用户的功能要求出发,4S店客户管理系统中的功能模块主要是实现管理员服务端;首页、个人中心、用户管理、门店管理、车展管理、汽车品牌管理、新闻头条管理、预约试驾管理、我的收藏管理、系统管理,用户客户端:首页、车展、新闻头条、我的。门店客户端:首页、车展、新闻头条、我的经过认真细致的研究,精心准备和规划,最后测试成功,系统可以正常使用。分析功能调整与4S店客户管理系统实现的实际需求相结合,讨论了微信开发者技术与后台结合java语言和MySQL数据库开发4S店客户管理系统的使用。 关键字:4S店客户管理系统小程序 微信开发者 Java技术 MySQL数据库 软件的功能: 1、开发实现4S店客户管理系统的整个系统程序; 2、管理员服务端;首页、个人中心、用户管理、门店管理、车展管理、汽车品牌管理、新闻头条管理、预约试驾管理、我的收藏管理、系统管理等。 3、用户客户端:首页、车展、新闻头条、我的 4、门店客户端:首页、车展、新闻头条、我的等相应操作; 5、基础数据管理:实现系统基本信息的添加、修改及删除等操作,并且根据需求进行交流信息的查看及回复相应操作。
现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本微信小程序医院挂号预约系统就是在这样的大环境下诞生,其可以帮助管理者在短时间内处理完毕庞大的数据信息,使用这种软件工具可以帮助管理人员提高事务处理效率,达到事半功倍的效果。此微信小程序医院挂号预约系统利用当下成熟完善的SSM框架,使用跨平台的可开发大型商业网站的Java语言,以及最受欢迎的RDBMS应用软件之一的MySQL数据库进行程序开发。微信小程序医院挂号预约系统有管理员,用户两个角色。管理员功能有个人中心,用户管理,医生信息管理,医院信息管理,科室信息管理,预约信息管理,预约取消管理,留言板,系统管理。微信小程序用户可以注册登录,查看医院信息,查看医生信息,查看公告资讯,在科室信息里面进行预约,也可以取消预约。微信小程序医院挂号预约系统的开发根据操作人员需要设计的界面简洁美观,在功能模块布局上跟同类型网站保持一致,程序在实现基本要求功能时,也为数据信息面临的安全问题提供了一些实用的解决方案。可以说该程序在帮助管理者高效率地处理工作事务的同时,也实现了数据信息的整体化,规范化与自动化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值