高数习题12.2(下)

  1. 求函数 f ( x ) = 1 2 − π 4 s i n x ( 0 ≤ x ≤ π ) f(x)=\frac{1}{2}-\frac{\pi}{4}sinx(0\leq x\leq\pi) f(x)=214πsinx(0xπ)的傅氏余弦级数.
    解:
    a n = 2 π ∫ 0 π f ( x ) c o s n x d x = 2 π ∫ 0 π ( 1 2 − π 4 s i n x ) c o s n x d x = { 0 , n = 0 − 1 2 ∫ 0 π s i n x c o s n x d x , n ≠ 0 = { 0 , n = 0 , 1 1 − ( − 1 ) n + 1 2 ( n 2 − 1 ) , n ≥ 2 \begin{aligned} a_n&=\frac{2}{\pi}\int_{0}^\pi f(x)cosnxdx\\ &=\frac{2}{\pi}\int_{0}^\pi (\frac{1}{2}-\frac{\pi}{4}sinx)cosnxdx\\ &=\begin{cases} 0,&n=0\\ -\frac{1}{2}\int_{0}^\pi sinxcosnxdx,&n\neq0\\ \end{cases}\\ &=\begin{cases} 0,&n=0,1\\ \frac{1-(-1)^{n+1}}{2(n^2-1)},&n\geq2\\ \end{cases} \end{aligned} an=π20πf(x)cosnxdx=π20π(214πsinx)cosnxdx={0,210πsinxcosnxdx,n=0n=0={0,2(n21)1(1)n+1,n=0,1n2
    所以 f ( x ) = 1 2 − π 4 s i n x = ∑ k = 1 ∞ c o s 2 k x ( 2 k − 1 ) ( 2 k + 1 ) f(x)=\frac{1}{2}-\frac{\pi}{4}sinx=\sum_{k=1}^\infty\frac{cos2kx}{(2k-1)(2k+1)} f(x)=214πsinx=k=1(2k1)(2k+1)cos2kx
  2. 求函数 f ( x ) = π − x 2 ( 0 ≤ x ≤ 2 π ) f(x)=\frac{\pi-x}{2}(0\leq x\leq2\pi) f(x)=2πx(0x2π)的傅氏正弦展开式.
    解:
    b n = 2 π ∫ 0 π f ( x ) s i n n x d x = 2 π ∫ 0 π π − x 2 s i n n x d x = { 0 , n = 0 1 n , n ≠ 0 \begin{aligned} b_n&=\frac{2}{\pi}\int_{0}^\pi f(x)sinnxdx\\ &=\frac{2}{\pi}\int_{0}^\pi \frac{\pi-x}{2}sinnxdx\\ &=\begin{cases} 0,&n=0\\ \frac{1}{n},&n\neq0\\ \end{cases}\\ \end{aligned} bn=π20πf(x)sinnxdx=π20π2πxsinnxdx={0,n1,n=0n=0
    所以 f ( x ) = π − x 2 = ∑ n = 1 ∞ s i n n x n f(x)=\frac{\pi-x}{2}=\sum_{n=1}^\infty\frac{sinnx}{n} f(x)=2πx=n=1nsinnx
  3. 利用前面各题中的展开式,求下列级数的值.
    (1) ∑ n = 1 ∞ s i n n n \sum_{n=1}^\infty\frac{sinn}{n} n=1nsinn; (2) 1 2 2 + 1 4 2 + ⋯ + 1 ( 2 n ) 2 + ⋯   . \frac{1}{2^2}+\frac{1}{4^2}+\cdots+\frac{1}{(2n)^2}+\cdots. 221+421++(2n)21+.
    解:
    (1) 由上题可知 f ( x ) = π − x 2 = ∑ n = 1 ∞ s i n n x n f(x)=\frac{\pi-x}{2}=\sum_{n=1}^\infty\frac{sinnx}{n} f(x)=2πx=n=1nsinnx,所以 ∑ n = 1 ∞ s i n n n = f ( 1 ) = π − 1 2 \sum_{n=1}^\infty\frac{sinn}{n}=f(1)=\frac{\pi-1}{2} n=1nsinn=f(1)=2π1
    (2) 由题2可知, f ( x ) = x 2 4 − π x 2 = − π 2 6 + ∑ n = 1 ∞ c o s n x n 2 f(x)=\frac{x^2}{4}-\frac{\pi x}{2}=-\frac{\pi^2}{6}+\sum_{n=1}^\infty\frac{cosnx}{n^2} f(x)=4x22πx=6π2+n=1n2cosnx f ( 0 ) = − π 2 6 + ∑ n = 0 ∞ 1 n 2 = 0 f(0)=-\frac{\pi^2}{6}+\sum_{n=0}^\infty\frac{1}{n^2}=0 f(0)=6π2+n=0n21=0,所以 ∑ n = 0 ∞ 1 n 2 = π 2 6 \sum_{n=0}^\infty\frac{1}{n^2}=\frac{\pi^2}{6} n=0n21=6π2,所以 ∑ k = 1 ∞ = π 2 24 \sum_{k=1}^\infty=\frac{\pi^2}{24} k=1=24π2
  4. 设函数 f ( x ) f(x) f(x)以T为周期,它在一个周期内的表达式为
    f ( t ) = { 0 , − T 2 ≤ t < 0 A s i n ω t , 0 ≤ t < T 2 f(t)=\begin{cases}0,&-\frac{T}{2}\leq t<0\\Asin\omega t,&0\leq t<\frac{T}{2}\end{cases} f(t)={0,Asinωt,2Tt<00t<2T其中 ω = 2 π T , A > 0 \omega=\frac{2\pi}{T},A>0 ω=T2π,A>0,求 f ( t ) f(t) f(t)的傅氏展开式.
    解:
    a 0 = 2 T ∫ − T 2 T 2 f ( t ) d t = 2 π A a_0=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)dt=\frac{2\pi}{A} a0=T22T2Tf(t)dt=A2π
    a n = 2 T ∫ − T 2 T 2 f ( t ) c o s n ω t d t = { 0 , n = 1 A [ ( − 1 ) n + 1 − 1 ] ( n 2 − 1 ) π , n ≠ 1 \begin{aligned} a_n&=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)cosn\omega tdt\\ &=\begin{cases} 0,&n=1\\ \frac{A[(-1)^{n+1}-1]}{(n^2-1)\pi},&n\neq1\\ \end{cases}\\ \end{aligned} an=T22T2Tf(t)cosnωtdt={0,(n21)πA[(1)n+11],n=1n=1
    b n = 2 T ∫ − T 2 T 2 f ( t ) s i n n ω t d t = { A 2 , n = 1 0 , n ≠ 1 \begin{aligned} b_n&=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)sinn\omega tdt\\ &=\begin{cases} \frac{A}{2},&n=1\\ 0,&n\neq1\\ \end{cases}\\ \end{aligned} bn=T22T2Tf(t)sinnωtdt={2A,0,n=1n=1
    所以 f ( t ) = π A + A 2 s i n ω t − 2 A π ∑ k = 1 ∞ c o s 2 k ω t 4 k 2 − 1 f(t)=\frac{\pi}{A}+\frac{A}{2}sin\omega t-\frac{2A}{\pi}\sum_{k=1}^\infty\frac{cos2k\omega t}{4k^2-1} f(t)=Aπ+2Asinωtπ2Ak=14k21cos2kωt
  5. 设函数 f ( x ) ( − π ≤ x ≤ π ) f(x)(-\pi\leq x\leq\pi) f(x)(πxπ)的傅氏系数为 a 0 , a n , b n ( n = 1 , 2 , ⋯   ) a_0,a_n,b_n(n=1,2,\cdots) a0,an,bn(n=1,2,),求函数 g ( x ) = f ( − x ) ( − π ≤ x ≤ π ) g(x)=f(-x)(-\pi\leq x\leq\pi) g(x)=f(x)(πxπ)的傅氏系数 A 0 , A n , B n ( n = 1 , 2 , ⋯   ) . A_0,A_n,B_n(n=1,2,\cdots). A0,An,Bn(n=1,2,).
    解:
    A 0 = 1 π ∫ − π π g ( x ) d x = 1 π ∫ π − π g ( − x ) d ( − x ) = 1 π ∫ − π π f ( x ) d x = a 0 A_0=\frac{1}{\pi}\int_{-\pi}^\pi g(x)dx=\frac{1}{\pi}\int_\pi^{-\pi} g(-x)d(-x)=\frac{1}{\pi}\int_{-\pi}^\pi f(x)dx=a_0 A0=π1ππg(x)dx=π1ππg(x)d(x)=π1ππf(x)dx=a0
    A n = 1 π ∫ − π π g ( x ) c o s n x d x = 1 π ∫ π − π g ( − x ) c o s ( − n x ) d ( − x ) = 1 π ∫ − π π f ( x ) c o s n x d x = a n A_n=\frac{1}{\pi}\int_{-\pi}^\pi g(x)cosnxdx=\frac{1}{\pi}\int_\pi^{-\pi} g(-x)cos(-nx)d(-x)=\frac{1}{\pi}\int_{-\pi}^\pi f(x)cosnxdx=a_n An=π1ππg(x)cosnxdx=π1ππg(x)cos(nx)d(x)=π1ππf(x)cosnxdx=an
    B n = 1 π ∫ − π π g ( x ) s i n n x d x = 1 π ∫ π − π g ( − x ) s i n ( − n x ) d ( − x ) = − 1 π ∫ − π π f ( x ) s i n n x d x = − b n B_n=\frac{1}{\pi}\int_{-\pi}^\pi g(x)sinnxdx=\frac{1}{\pi}\int_\pi^{-\pi} g(-x)sin(-nx)d(-x)=-\frac{1}{\pi}\int_{-\pi}^\pi f(x)sinnxdx=-b_n Bn=π1ππg(x)sinnxdx=π1ππg(x)sin(nx)d(x)=π1ππf(x)sinnxdx=bn
  6. 设函数 f ( x ) f(x) f(x)是以 2 π 2\pi 2π为周期的连续函数, a 0 , a n , b n ( n = 1 , 2 , ⋯   ) a_0,a_n,b_n(n=1,2,\cdots) a0,an,bn(n=1,2,)为傅氏系数,求函数
    F ( x ) = 1 π ∫ − π π f ( t ) f ( t + x ) d t F(x)=\frac{1}{\pi}\int_{-\pi}^\pi f(t)f(t+x)dt F(x)=π1ππf(t)f(t+x)dt的傅氏系数 A 0 , A n , B n ( n = 1 , 2 , ⋯   ) . A_0,A_n,B_n(n=1,2,\cdots). A0,An,Bn(n=1,2,).
    解:
    A 0 = 1 π ∫ − π π F ( x ) d x = 1 π ∫ − π π 1 π ∫ − π π f ( t ) f ( t + x ) d t d x = 1 π 2 ∫ − π π f ( t ) d t ∫ − π π f ( t + x ) d x = 1 π 2 ∫ − π π f ( t ) d t ∫ − π π f ( u ) d u = [ 1 π ∫ − π π f ( x ) d x ] 2 = a 0 2 A_0=\frac{1}{\pi}\int_{-\pi}^\pi F(x)dx=\frac{1}{\pi}\int_{-\pi}^\pi \frac{1}{\pi}\int_{-\pi}^\pi f(t)f(t+x)dtdx=\frac{1}{\pi^2}\int_{-\pi}^\pi f(t)dt\int_{-\pi}^\pi f(t+x)dx=\frac{1}{\pi^2}\int_{-\pi}^\pi f(t)dt\int_{-\pi}^\pi f(u)du=[\frac{1}{\pi}\int_{-\pi}^\pi f(x)dx]^2=a_0^2 A0=π1ππF(x)dx=π1πππ1ππf(t)f(t+x)dtdx=π21ππf(t)dtππf(t+x)dx=π21ππf(t)dtππf(u)du=[π1ππf(x)dx]2=a02
    A n = 1 π ∫ − π π F ( x ) c o s n x d x = 1 π ∫ − π π 1 π ∫ − π π f ( t ) f ( t + x ) d t c o s n x d x = 1 π 2 ∫ − π π f ( t ) d t ∫ − π π f ( t + x ) c o s n x d x = 1 π 2 ∫ − π π f ( t ) d t ∫ − π π f ( u ) c o s n ( u − t ) d u = 1 π 2 [ ∫ − π π f ( t ) d t ∫ − π π f ( u ) ( c o s n u c o s n t + s i n n u s i n n t ) d u ] = 1 π 2 ∫ − π π f ( t ) c o s n t d t ∫ − π π f ( u ) c o s n u d u + 1 π 2 ∫ − π π f ( t ) s i n n t d t ∫ − π π f ( u ) s i n n u d u = [ 1 π ∫ − π π f ( x ) c o s n x d x ] 2 + [ 1 π ∫ − π π f ( x ) s i n n x d x ] 2 = a n 2 + b n 2 A_n=\frac{1}{\pi}\int_{-\pi}^\pi F(x)cosnxdx=\frac{1}{\pi}\int_{-\pi}^\pi \frac{1}{\pi}\int_{-\pi}^\pi f(t)f(t+x)dtcosnxdx=\frac{1}{\pi^2}\int_{-\pi}^\pi f(t)dt\int_{-\pi}^\pi f(t+x)cosnxdx=\frac{1}{\pi^2}\int_{-\pi}^\pi f(t)dt\int_{-\pi}^\pi f(u)cosn(u-t)du=\frac{1}{\pi^2}[\int_{-\pi}^\pi f(t)dt\int_{-\pi}^\pi f(u)(cosnucosnt+sinnusinnt)du]=\frac{1}{\pi^2}\int_{-\pi}^\pi f(t)cosntdt\int_{-\pi}^\pi f(u)cosnudu+\frac{1}{\pi^2}\int_{-\pi}^\pi f(t)sinntdt\int_{-\pi}^\pi f(u)sinnudu=[\frac{1}{\pi}\int_{-\pi}^\pi f(x)cosnxdx]^2+[\frac{1}{\pi}\int_{-\pi}^\pi f(x)sinnxdx]^2=a_n^2+b_n^2 An=π1ππF(x)cosnxdx=π1πππ1ππf(t)f(t+x)dtcosnxdx=π21ππf(t)dtππf(t+x)cosnxdx=π21ππf(t)dtππf(u)cosn(ut)du=π21[ππf(t)dtππf(u)(cosnucosnt+sinnusinnt)du]=π21ππf(t)cosntdtππf(u)cosnudu+π21ππf(t)sinntdtππf(u)sinnudu=[π1ππf(x)cosnxdx]2+[π1ππf(x)sinnxdx]2=an2+bn2
    B n = 1 π ∫ − π π F ( x ) s i n n x d x = 1 π ∫ − π π 1 π ∫ − π π f ( t ) f ( t + x ) d t s i n n x d x = 1 π 2 ∫ − π π f ( t ) d t ∫ − π π f ( t + x ) s i n n x d x = 1 π 2 ∫ − π π f ( t ) d t ∫ − π π f ( u ) s i n n ( u − t ) d u = 1 π 2 [ ∫ − π π f ( t ) d t ∫ − π π f ( u ) ( s i n n u c o s n t − c o s n u s i n n t ) d u ] = 1 π 2 ∫ − π π f ( t ) c o s n t d t ∫ − π π f ( u ) s i n n u d u − 1 π 2 ∫ − π π f ( t ) s i n n t d t ∫ − π π f ( u ) c o s n u d u = 0 B_n=\frac{1}{\pi}\int_{-\pi}^\pi F(x)sinnxdx=\frac{1}{\pi}\int_{-\pi}^\pi \frac{1}{\pi}\int_{-\pi}^\pi f(t)f(t+x)dtsinnxdx=\frac{1}{\pi^2}\int_{-\pi}^\pi f(t)dt\int_{-\pi}^\pi f(t+x)sinnxdx=\frac{1}{\pi^2}\int_{-\pi}^\pi f(t)dt\int_{-\pi}^\pi f(u)sinn(u-t)du=\frac{1}{\pi^2}[\int_{-\pi}^\pi f(t)dt\int_{-\pi}^\pi f(u)(sinnucosnt-cosnusinnt)du]=\frac{1}{\pi^2}\int_{-\pi}^\pi f(t)cosntdt\int_{-\pi}^\pi f(u)sinnudu-\frac{1}{\pi^2}\int_{-\pi}^\pi f(t)sinntdt\int_{-\pi}^\pi f(u)cosnudu=0 Bn=π1ππF(x)sinnxdx=π1πππ1ππf(t)f(t+x)dtsinnxdx=π21ππf(t)dtππf(t+x)sinnxdx=π21ππf(t)dtππf(u)sinn(ut)du=π21[ππf(t)dtππf(u)(sinnucosntcosnusinnt)du]=π21ππf(t)cosntdtππf(u)sinnuduπ21ππf(t)sinntdtππf(u)cosnudu=0
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值