重温线性代数(3)——正交、投影

本文是作者重温线性代数系列的一部分,重点讲解正交性和投影的概念。介绍了向量的正交性,子空间的正交补,以及在解决线性方程组Ax=b无解时的投影方法,包括一维和多维投影的计算。通过矩阵的正交化,如Gram-Schmidt过程,使得理解线性代数的基础概念更加深入。
摘要由CSDN通过智能技术生成

        线性代数是数学中的基础,也是十分重要的数学工具。在接触机器学习之后,我逐渐认识到了线性代数的重要性,矩阵运算,优化求解,都离不开线性代数的知识。同时,我也发现了自己数学基础的严重不足,急需好好重学一遍线性代数,为之后的学习打好基础。因此,“重温线性代数”这个系列就诞生了。或许大家会觉得这个系列的内容稍微基础了点,但学习就是如此,一遍又一遍,脚踏实地,温故知新,每次学习都会有新的收获。

        离开了大学的课堂,但还好现在有琳琅满目的网络公开课课程。我选择学习的是网上颇受赞赏的MIT "Introdution to Linear Algebra"课程,由Gilbert Strang主讲。参考书目为Strang编写的《Introduction to Linear Algebra》4th edition。目前为止,我觉得这门课给我提供了不少新的有趣的思路,是我之前学习线性代数的时候没有思考过的,值得一学。

————————————————————————————————————————————————————————————————

         本文涉及的内容是课程视频中的14至17课,对应书本中的第四章 Orthogonality。顾名思义,本章主要讲的是“正交性”,而正交性的作用会体现在“投影”(Projection)当中,而投影的作用则是为了解决线性方程组 Ax=b 无解情况下的问题。加上本章的学习,我们就对 Ax=b 有了全面的认识。本文分以下三点进行介绍:

  1. 正交性:包括向量的正交、子空间的正交;
  2. 投影:从1维、3维投影出发,寻求Ax=b无解情况下的解法,即最小二乘法;
  3. 矩阵的正交化:Gram-Schmidt 方法。
         本章内容看似不太困难,但我学习的时候也感觉有点犯晕。如有疏漏,望指教。

         以下逐一道来。

1、正交性

  • 向量正交:如果两个向量的内积为零,则两个向量正交,即

  • 子空间正交:给定两个子空间S、T,若S中的所有向量与T中的所有向量都正交,则称子空间S和T正交。

  • 正交补(Orthogonal complement):子空间V的正交补是一个包含了所有与V正交的向量的子空间,记作

        这一小节的核心是要说明上一章提到的4个基本子空间的正交关系:

        矩阵A的零空间是其行空间的正交补,即   (in ) 。

        矩阵A的左零空间是其列空间的正交补,即  (in )。

        首先我们来说明正交性:为什么

        由于是矩阵A的零空间,我们有 Ax=0,即:


         可见x与行向量的内积都是0,因此它与所有行向量的线性组合都是正交的,得证。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值