POJ 1141 Brackets Sequence

Brackets Sequence
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 32855 Accepted: 9508 Special Judge

Description

Let us define a regular brackets sequence in the following way: 

1. Empty sequence is a regular sequence. 
2. If S is a regular sequence, then (S) and [S] are both regular sequences. 
3. If A and B are regular sequences, then AB is a regular sequence. 

For example, all of the following sequences of characters are regular brackets sequences: 

(), [], (()), ([]), ()[], ()[()] 

And all of the following character sequences are not: 

(, [, ), )(, ([)], ([(] 

Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.

Input

The input file contains at most 100 brackets (characters '(', ')', '[' and ']') that are situated on a single line without any other characters among them.

Output

Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.

Sample Input

([(]

Sample Output

()[()]
 
题意:
给你一个括号字符串,你的任务是打印处配对好的括号字符串。
思路:区间dp加路径输出。路径输出比较难想。
dp[i][j] 表示从i到j  所需要配对的最小字符个数。(可以参考POJ 2955 )
http://blog.csdn.net/yjt9299/article/details/78150774
但是两个dp数组表示的意思正好相反。
这里对于这个题,还需要一个pos数组pos[i][j] 记录断开的位置,(从i到j) 
dp方程: dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]);
 
代码:
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#define N 305
#define inf 0x3f3f3f

using namespace std;

int dp[N][N];
int pos[N][N];
char s[N];


void solve()
{
	int i,j,k,d;
	memset(dp,0,sizeof(dp));
	memset(pos,-1,sizeof(pos));
	int len=strlen(s);
	for(i = 1; i < len; i++)
        dp[i][i-1] = 0;
	for(i=1;i<len;i++) dp[i][i]=1;
	
	for(d=1;d<len;d++)
	{
		for(i=0;i<len-d;i++)
		{
			j=d+i;
			dp[i][j]=inf;
			if((s[i] == '(' && s[j] == ')') || (s[i] == '[' && s[j] == ']')) dp[i][j]=min(dp[i][j],dp[i+1][j-1]);//i  ,j 字符匹配
			for(k=i;k<j;k++)
			{
				if(dp[i][k]+dp[k+1][j]<dp[i][j])
				{
					dp[i][j]=dp[i][k]+dp[k+1][j];//找到使得从i到j中需要配对的括号的个数为最小的k,也就是在位置k处进行括号配对。 
					pos[i][j]=k;
				}
			}
		}
	}
	
	return ;
}

void print(int l,int r)
{
	if(l>r) return ;
	if(l==r){
		if(s[l]=='('||s[l]==')') printf("()");
		else if(s[l]=='['||s[l]==']') printf("[]");
		return ;
	}
	else{
		if(pos[l][r]!=-1)
		{
			print(l,pos[l][r]);
			print(pos[l][r]+1,r);
		}
		else{
			if(s[l]=='('){
				printf("(");
				print(++l,--r);
				printf(")");
			}
			else if(s[l]=='['){
				printf("[");
				print(++l,--r);
				printf("]");
			}
		}
	}
	return ;
}

int main()
{
	scanf("%s",s);
	int len=strlen(s);
	solve();
	
	for(int i=0;i<len;i++)
	{
		for(int j=0;j<len;j++)
		{
			printf("%d ",pos[i][j]);
		}
		printf("\n");
	}
	
	print(0,len-1);
	printf("\n");
	return 0;
}


在最后粘一下大神的思路:

解题思路:

根据“黑书”的思路,定义:

d[i][j]为输入序列从下标i到下标j最少需要加多少括号才能成为合法序列。0<=i<=j<len (len为输入序列的长度)。

c[i][j]为输入序列从下标i到下标j的断开位置,如果没有断开则为-1。

当i==j时,d[i][j]为1

当s[i]=='(' && s[j]==')' 或者 s[i]=='[' && s[j]==']'时,d[i][j]=d[i+1][j-1]

否则d[i][j]=min{d[i][k]+d[k+1][j]} i<=k<j ,  c[i][j]记录断开的位置k

采用递推方式计算d[i][j]

输出结果时采用递归方式输出print(0, len-1)

输出函数定义为print(int i, int j),表示输出从下标i到下标j的合法序列

当i>j时,直接返回,不需要输出

当i==j时,d[i][j]为1,至少要加一个括号,如果s[i]为'(' 或者')',输出"()",否则输出"[]"

当i>j时,如果c[i][j]>=0,说明从i到j断开了,则递归调用print(i, c[i][j]);和print(c[i][j]+1, j);

                如果c[i][j]<0,说明没有断开,如果s[i]=='(' 则输出'('、 print(i+1, j-1); 和")"

                                                                     否则输出"[" print(i+1, j-1);和"]"

黑书上的半括号的那种情况是多余的,包含在d[i][j]=min{d[i][k]+d[k+1][j]}这种情况里。

这种dp比较训练思维,不是常规的那种一眼就看出来的最优子结构。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值