[论文笔记]NEZHA

本文介绍了华为诺亚方舟实验室的论文NEZHA,该模型针对BERT在中文数据集上的不足,提出了功能相对位置编码、整词掩码策略、混合精度训练和LAMB优化器等优化技术,提高了预训练模型在中文自然语言理解任务上的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

今天带来华为诺亚方舟实验室提出的论文NEZHA,题目是 针对中文中文语言理解神经网络上下文表示(NEural contextualiZed representation for CHinese lAnguage understanding),为了拼出哪吒。

预训练语言模型由于具有通过对大型语料库进行预训练来捕获文本中深层上下文信息的人能力,因此在各种自然语言理解任务中均取得了巨大成功。然而,对中文预训练模型BERT仍然存在很大的优化空间。

本篇工作提出在中文语料库上进行预训练的语言模型NEZHA,针对BERT在中文数据集上的不足进行了优化,包括作为有效位置编码方法的功能相对位置编码(Functional )、全词掩码策略(Whole Word Masking strategy,WWM)、混合精度训练(Mixed Precision Training,MPT)和用于训练模型的LAMB优化器。

总体介绍

现存的预训练语言模型大多数基于英文语料(BooksCorpus和英文维基百科)训练,也有一些专门为中文语言训练的尝试,包括谷歌的Bert-chinese、ERNIE-Baidu和BERT-W

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愤怒的可乐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值