Llama改进之——分组查询注意力

引言

今天介绍LLAMA2模型引入的关于注意力的改进——分组查询注意力(Grouped-query attention,GQA)1

Transformer中的多头注意力在解码阶段来说是一个性能瓶颈。多查询注意力2通过共享单个key和value头,同时不减少query头来提升性能。多查询注意力可能导致质量下降和训练不稳定,因此常用的是分组查询注意力。

然后我们结合上篇文章3探讨的旋转位置编码,将选择位置编码应用到分组查询注意力上。

多头注意力

我们先回顾以下原始多头注意力的实现。

import torch
from torch import nn
### 开源大语言模型的最新进展 #### 中文LLaMA和Alpaca模型 在Apache-2.0协议下,中文LLaMA模型及其指令精调版本——中文Alpaca大模型已经开源。这些模型基于原始LLaMA进行了改进,通过扩充中文词表以及利用大量中文数据进行二次预训练,从而增强了其对中文基础语义的理解能力[^1]。此外,中文Alpaca还特别针对中文指令数据进行了微调,大幅提高了模型理解和执行复杂任务的能力。 #### 数据隐私与成本考量下的NL-to-SQL引擎开发 为了应对闭源大型语言模型带来的高昂费用及潜在的数据隐私风险,在Dataherald项目中,研究人员创建了一款开源自然语言转SQL引擎。该工具可以兼容多种开源LLM,如Llama2和Mistral等,并将其性能与OpenAI旗下的GPT系列模型做了对比测试。结果显示,部分开源模型已具备相当竞争力,能够在特定场景下替代昂贵的企业级解决方案[^2]。 #### Meta推出的新一代Llama 3架构特性解析 近期,Meta发布了下一代开源大语言模型Llama 3。相比之前版本,它引入了一些重要技术创新点:首先是扩大了Tokenizer规模至128,256 tokens;其次是增加了嵌入层维度使得最小规格参数量上升到了约8亿级别;最后则是应用了分组查询注意机制(GQA),这不仅优化了资源利用率还能更好地支持超长序列建模需求[^3]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "meta-llama/Llama-3" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) text = "你好世界!" input_ids = tokenizer.encode(text, return_tensors="pt") output = model.generate(input_ids, max_length=50) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` 上述代码片段展示了如何加载并运行最新的Llama 3模型实例化过程的一部分。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愤怒的可乐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值