规划兼职工作

本文深入解析LeetCode上一道关于作业调度的问题,通过动态规划方法实现最大利润的获取。文章详细介绍了如何通过排序和比较找出不冲突的任务组合,以达到最大的收益。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、题目描述

题目链接:https://leetcode-cn.com/problems/maximum-profit-in-job-scheduling/

 

二、题目分析

题解参考:https://leetcode-cn.com/problems/maximum-profit-in-job-scheduling/solution/java-dong-tai-gui-hua-by-zhi-94/

一个比较直观的想法,就是假设我们是一个一个工作加的,每加一个工作,我们有两种选择,一是新的这个工作不做,取前面的最大值。二是这个工作做,但是要把前面重叠的工作去除。在这两个中取最大值。

这里我们使用过一个数组dp[i]来标示前i个工作我们能获得的最大工资。我们将endTime按照升序排列,这样子我们向前找到第一个endTime大于等于当前startTime的工作,就代表前面的工作都是可以可以做的。

 

三、代码

    public int jobScheduling(int[] startTime, int[] endTime, int[] profit) {
        int len = startTime.length;
        int[] dp = new int[len];
        job[] jobs = new job[len];
        for (int i = 0; i < len; ++i) {
            jobs[i] = new job(startTime[i],endTime[i],profit[i]);
        }
        Arrays.sort(jobs, new Comparator<job>() {
            @Override
            public int compare(job o1, job o2) {
                return o1.endTime - o2.endTime;
            }
        });
        for (int i = 0; i < len; ++i) {
            dp[i] = jobs[i].profit;
        }
        for (int i = 1; i < len; ++i) {
            dp[i] = Math.max(dp[i-1],jobs[i].profit);
            for (int j = i - 1; j >= 0; --j) {
                if (jobs[j].endTime <= jobs[i].startTime) {
                    dp[i] = Math.max(dp[i],dp[j] + jobs[i].profit);
                    break;
                }
            }
        }
        return dp[len-1];
    }

    class job {
        int startTime;
        int endTime;
        int profit;

        public job(int startTime, int endTime, int profit) {
            this.startTime = startTime;
            this.endTime = endTime;
            this.profit = profit;
        }
    }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值