机器学习(二):感知机模型

本文介绍了机器学习中的感知机模型,用于解决线性可分的分类问题。通过散点图示例解释了如何寻找划分数据的直线,并以误分类点到直线距离之和作为代价函数。文章探讨了梯度下降和随机梯度下降优化方法,并引入对偶形式以提高计算效率。同时,指出了感知机模型的局限性,如只能处理线性可分数据和解的非唯一性。
摘要由CSDN通过智能技术生成

在之前,我们讨论了机器学习中的线性回归模型,但是在机器学习中,除了这种根据输入值给出预测结果的问题,我们还会遇到给定两组甚至是多组已经分好类的数据,让我们找出一个关系来划分他们,这就是分类问题。

举个例子,有肿瘤是否为良性和肿瘤的大小这两类数据,我们可以做出一幅散点图,同时我们希望能在这幅散点图中找到一种方法,来根据肿瘤的大小判断肿瘤是否为良性。

我们先从最简单的情况入手,如下图
在这里插入图片描述
给定的两种数据分别用红色的叉和黄色的圈表示,对于上图中的线性可分的两组数据,显然我们可以用如上图中蓝色的直线对两类数据进行划分。

现在给定两组线性可分的数据对于计算机,我们就希望找到一条能够尽可能区分两组数据的直线,为了作出区分,我们将分别赋予两组数据-1和1的特征记作 y y y,由此,我们假设赋予的这个特征跟输入的变量有如下关系
h ω , b ( x ) = s i g n ( ω x + b ) h_{\omega,b}(x)=sign(\omega x+b) hω,b(x)=sign(ωx+b)上式中的 ω \omega ω x x x都是向量

那么我们如何衡量这条直线的好坏呢?一个显然的评判条件就是误分类点的个数,即找到一个点,发现它满足
y ( i ) h ω , b ( x ( i ) ) ≤ 0 y^{(i)}h_{\omega,b}(x^{(i)})\leq0 y(i)hω,b(x(i))0这是一个很好的评判标准,但是由于误分类点的个数关于 ω \omega ω b b b的函数是一个不连续且在连续处导数为0的函数,不便于优化以找到一个更优的 ω \omega ω b b b,所以我们就用了误分类点到当前直线的距离之和来作为这条直线的代价函数
J ( ω , b ) = − 1 ∣ ∣ ω ∣ ∣ ∑ i = 1 m y ( i ) ( ω x ( i ) + b ) J(\omega,b)=\frac{-1}{\mid\mid\omega\mid\mid}\sum_{i=1}^my^{(i)}(\omega x^{(i)}+b) J(ω,b)=ω1i=1my(i)(ωx(i)+b) m m m为误分类点的个数,但是式中的 ∣ ∣ ω ∣ ∣ \mid\mid\omega\mid\mid ω的存在会导致计算的复杂化,为了简单,我们取
J ( ω , b ) = − ∑ i = 1 m y ( i ) ( ω x ( i ) + b ) J(\omega,b)=-\sum_{i=1}^my^{(i)}(\omega x^{(i)}+b) J(ω,b)=i=1

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值