支持向量机知识点大纲(附提问)

什么是支持向量

svm中支持向量即划分超平面附近的样本向量,其能决定划分超平面

线性可分+硬间隔

图像示意+目标函数

在这里插入图片描述目标函数:
(1)最大化超平面间隔(问题:为什么选择间隔最大化的超平面);
(2)所有样本分类正确;

近似线性可分+软间隔

硬间隔存在的问题
样本集合线性不可分可能是由于噪声或者异常值导致,即使找到了核函数使得样本线性可分,也会导致过拟合问题;
解决方案
(1)最大化朝平面间隔;
(2)尽可能样本分类正确(需要衡量预测值偏离实际值程度(损失函数/松弛变量),以及罚分);

损失函数(松弛变量)vs 代价(成本)函数 vs目标函数

损失函数:针对单个样本而言,衡量预测值偏离实际值程度
代价(成本)函数:所有样本损失函数均值
目标函数:成本函数 + 正则化项

软间隔目标函数以及常见损失函数

  1. 0-1损失(大家都不爱它,非凸,不连续,不可导,数学性质不好)
  2. hinge损失(SVM最常用
  3. 指数损失(AdaBoost用
  4. 对数损失(逻辑回归用
    在这里插入图片描述

线性不可分解决方案

核函数

核函数实质:构造相应的高维特征,将低维度数据投射到更高维空间,便于构造超平面

常见核函数

  1. 线性核
  2. 多项式核
  3. 高斯核
  4. 拉普拉斯核

支持向量优缺点,应用场景

优点

(1)大多数样本集上表现优秀;
(2)能有效处理高维数据 (提问:为什么?);
(3)可以克服logistic回归在非线性可分数据效果局限性;
(4)不受一类样本影响,只受支持向量影响;

缺点

(1)涉及到距离计算,运行消耗大量内存和时间,不适宜大数据集;
(2)难以选择合适的核函数,一般靠经验;
(3)参数调节较多;
(4)对缺失值,异常值敏感;问题:为什么svm对异常值,缺失值敏感?(支持向量作用大)
(5)数据处理要求规范化;

应用场景

(1)样本聚集在决策边界附近;
(2)“文本识别”,“人脸识别”
(3)小样本,高维,非线性数据集

调参

通用参数:正则化参数C越大 罚分越高 间隔越窄 越容易过拟合
核函数kernal:linear,poly,rbf,sigmoid,precomputed
poly(多项式核):degree多项式阶数, 越高越容易过拟合
rbf(高斯核): gamma 同C,超平面弯曲度,gamma越大,越弯曲,越过拟合

如何处理多分类问题

1 vs 1 :SVM采用 1v1+投票
1 vs all

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值