Cart回归树相关
决策树回顾
(1)决策树进化(ID3,C4.5,Cart)
提问:异同点
(2)决策树节点分裂评估准则
- 分类:信息增益,信息增益比率,gini系数
- 回归:MSE
提问:优缺点
(3)剪枝:预剪枝(泛化能力,自上而下,偏差,快),后剪枝(泛化能力,自下而上,慢)
提问:优缺点
Cart树
classifier and regression tree,既可分类任务,又可回归任务,但构建过程仅仅为二叉树
分类树
(1)最优特征选择准则:gini系数(从样本中任意取两样本不属于同一类的概率)
(2)算法流程:返回递归情形+递归分裂
回归树(最小二乘回归树)
最优特征选择准则:MSE(均方差)
- 在左右子树样本已知情况下,各节点预测值取均值时,左右子树MSE和最小;
- 那么接下来的问题是 如何选择特征j,以及特征对应的切分点s
做法:遍历特征以及切分点,计算分裂后左右子树MSE和,取使得MSE最小的特征j和切分点s