cart回归树备忘录

决策树回顾

(1)决策树进化(ID3,C4.5,Cart)
提问:异同点

(2)决策树节点分裂评估准则

  1. 分类:信息增益,信息增益比率,gini系数
  2. 回归:MSE

提问:优缺点

(3)剪枝:预剪枝(泛化能力,自上而下,偏差,快),后剪枝(泛化能力,自下而上,慢)

提问:优缺点

Cart树

classifier and regression tree,既可分类任务,又可回归任务,但构建过程仅仅为二叉树

分类树

(1)最优特征选择准则:gini系数(从样本中任意取两样本不属于同一类的概率)
(2)算法流程:返回递归情形+递归分裂

回归树(最小二乘回归树)

最优特征选择准则:MSE(均方差)

  1. 在左右子树样本已知情况下,各节点预测值取均值时,左右子树MSE和最小;
  2. 那么接下来的问题是 如何选择特征j,以及特征对应的切分点s
    做法:遍历特征以及切分点,计算分裂后左右子树MSE和,取使得MSE最小的特征j和切分点s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值