协方差表示的意义

协方差用于衡量两个变量之间的线性相关性。当数据去中心化后,协方差矩阵可以简化,若x与y不相关,协方差为0,表示两者独立。正相关情况协方差大于0,负相关则小于0。拉伸后的协方差矩阵是对角阵,转置等于自身。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
但是这张图片x与y的平均值都为0,是去中心化之后的。可化简为:
在这里插入图片描述
如果协方差是自己与自己,继续化简为:
在这里插入图片描述
在这里插入图片描述
如果x与y不相关,那么cov(x,y)和cov(y,x)协方差就是0,也就是x与y不相关,x与y服从标准的正太分布,此时它的协方差矩阵是一个单位矩阵。

在这里插入图片描述
正相关的x与y协方差大于0
在这里插入图片描述
负相关的协方差矩阵小于0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值