协方差表示的意义

协方差用于衡量两个变量之间的线性相关性。当数据去中心化后,协方差矩阵可以简化,若x与y不相关,协方差为0,表示两者独立。正相关情况协方差大于0,负相关则小于0。拉伸后的协方差矩阵是对角阵,转置等于自身。
摘要由CSDN通过智能技术生成

在这里插入图片描述
但是这张图片x与y的平均值都为0,是去中心化之后的。可化简为:
在这里插入图片描述
如果协方差是自己与自己,继续化简为:
在这里插入图片描述
在这里插入图片描述
如果x与y不相关,那么cov(x,y)和cov(y,x)协方差就是0,也就是x与y不相关,x与y服从标准的正太分布,此时它的协方差矩阵是一个单位矩阵。

在这里插入图片描述
正相关的x与y协方差大于0
在这里插入图片描述
负相关的协方差矩阵小于0

自相关协方差矩阵是指一个变量与自身的协方差构成的矩阵。它的意义在于衡量一个变量在不同时间点上的偏差变化趋势是否一致。通过计算变量与自身的协方差,我们可以了解到该变量在不同时间点上的相关性。当自相关协方差为正时,表示变量在不同时间点上呈现正相关关系;当自相关协方差为负时,表示变量在不同时间点上呈现负相关关系;当自相关协方差为零时,表示变量在不同时间点上不相关。而自相关协方差的绝对值越大,表示变量在不同时间点上的相关性越强。因此,自相关协方差矩阵可以帮助我们分析和理解一个变量在时间序列上的变化趋势和相关性。\[3\] #### 引用[.reference_title] - *1* *3* [协方差矩阵及其意义](https://blog.csdn.net/qq_41076797/article/details/112640676)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [协方差矩阵的意义](https://blog.csdn.net/sinat_33588424/article/details/79695983)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值