文章目录
1. bfs + 八数码
链接:845. 八数码
这道题貌似叫做 数字华容道,是一个益智游戏, 4 * 4
的话我一般 30s
左右就搞定了哈哈。
思路:
- 将问题抽象为图论最短路问题
- 初始状态看成一个节点
- 将
x
与上下左右交换,将新状态看成新节点,即可以视为 在图中建了一条权值为 1 的边, 即宽搜就可以求到最短路 - 状态定义是个难点,我们这采用将矩阵转化成字符串来唯一标识一个状态。2
- 不能重复搜索一个状态, 可以使用
unordered_map
中标记,标记这种情况已经被使用过了 - 注意下一维字符串转化成二维的映射关系就行了,即 x = k / 3 , y = k % 3 x = k / 3, y = k \% 3 x=k/3,y=k%3
总结:题目题意很好理解,但是题目抽象难,建图问题。
代码:
#include <iostream>
#include <cstring>
#include <unordered_map>
#include <queue>
#include <string>
#include <algorithm>
using namespace std;
int bfs(string start) {
string end = "12345678x";
queue<string> q;
unordered_map<string, int> d; // 每个状态对应的转移次数
q.push(start);
d[start] = 0;
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
while (q.size()) {
auto t = q.front();
q.pop();
int dist = d[t]; // 存当前状态的转移次数
if (t == end) return dist;
// 状态转移
int k = t.find('x');
int x = k / 3, y = k % 3; // 一维转二维
for (int i = 0; i < 4; ++i) { // 枚举四个转移的状态,添加到状态表中
int a = x + dx[i], b = y + dy[i];
if (a >= 0 && a < 3 && b >= 0 && b < 3) {
swap(t[k], t[a * 3 + b]);
if (!d.count(t)) { // 新状态则添加
d[t] = dist + 1;
q.push(t);
}
swap(t[k], t[a * 3 + b]); // 恢复到原状态
}
}
}
return -1; // 所有状态搜索完毕,到不了终点
}
int main() {
string start;
for (int i = 0; i < 9; ++i) {
char c;
cin >> c;
start += c;
}
cout << bfs(start) << endl;
return 0;
}