[bfs+图论] aw845. 八数码(建图+bfs最小步数模型+思维)

12 篇文章 0 订阅
8 篇文章 0 订阅

文章目录

1. bfs + 八数码

链接:845. 八数码

推荐,滑稽佬的题解:845. 八数码【BFS/康托展开】

在这里插入图片描述
这道题貌似叫做 数字华容道,是一个益智游戏, 4 * 4 的话我一般 30s 左右就搞定了哈哈。

思路:

  • 将问题抽象为图论最短路问题
  • 初始状态看成一个节点
  • x 与上下左右交换,将新状态看成新节点,即可以视为 在图中建了一条权值为 1 的边, 即宽搜就可以求到最短路
  • 状态定义是个难点,我们这采用将矩阵转化成字符串来唯一标识一个状态。2
  • 不能重复搜索一个状态, 可以使用 unordered_map 中标记,标记这种情况已经被使用过了
  • 注意下一维字符串转化成二维的映射关系就行了,即 x = k / 3 , y = k % 3 x = k / 3, y = k \% 3 x=k/3,y=k%3

总结:题目题意很好理解,但是题目抽象难,建图问题。

代码:

#include <iostream>
#include <cstring>
#include <unordered_map>
#include <queue>
#include <string>
#include <algorithm>

using namespace std;

int bfs(string start) {
    string end = "12345678x";
    
    queue<string> q;
    unordered_map<string, int> d;   // 每个状态对应的转移次数
    
    q.push(start);
    d[start] = 0;
    
    int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
    
    
    while (q.size()) {
        auto t = q.front();
        q.pop();
        
        int dist = d[t];    // 存当前状态的转移次数
        
        if (t == end) return dist;
        
        // 状态转移
        int k = t.find('x');
        int x = k / 3, y = k % 3;   // 一维转二维
        
        for (int i = 0; i < 4; ++i) {   // 枚举四个转移的状态,添加到状态表中
            int a = x + dx[i], b = y + dy[i];
            if (a >= 0 && a < 3 && b >= 0 && b < 3) {
                swap(t[k], t[a * 3 + b]);
                
                if (!d.count(t)) {  // 新状态则添加
                    d[t] = dist + 1;
                    q.push(t);
                }
                
                swap(t[k], t[a * 3 + b]);   // 恢复到原状态
            }
        }
    }
    
    return -1;  // 所有状态搜索完毕,到不了终点
}

int main() {
    string start;
    for (int i = 0; i < 9; ++i) {
        char c;
        cin >> c;
        start += c;
    }
    
    cout << bfs(start) << endl;
    
    return 0; 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ypuyu

如果帮助到你,可以请作者喝水~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值