[Mdfs] lc78. 子集(二进制枚举+排列类型枚举+经典)

1. 题目来源

链接:78. 子集

必看,必刷,dfs 经典:

2. 题目解析

回溯经典题目。

枚举每个数选不选即可,也可以直接用二进制枚举选不选也是一样的。

注意本题两种 dfs 的不同之处。dfs 递的过程中记录答案,dfs 归的过程中记录答案


时间复杂度: O ( n ∗ 2 n ) O(n*{2^n}) O(n2n),由于需要记录方案,看答案就懂了

空间复杂度: O ( n 2 ) O(n^2) O(n2)


归 过程写法:

class Solution {
public:
    vector<vector<int>> res;
    vector<int> path;

    void dfs(vector<int>& a, int u) {
        if (u == a.size()) {
            res.push_back(path);
            return ;
        }

        dfs(a, u + 1);
        
        path.push_back(a[u]);
        dfs(a, u + 1);
        path.pop_back();
    }

    vector<vector<int>> subsets(vector<int>& nums) {
        dfs(nums, 0);

        return res;
    }
};

递 过程写法

class Solution {
public:
    vector<vector<int>> res;
    vector<int> path;
    void dfs(vector<int>& nums, int u) {
        res.push_back(path);

        for (int i = u; i < nums.size(); i ++ ) {
            path.push_back(nums[i]);
            dfs(nums, i + 1);
            path.pop_back();
        }
    }
    vector<vector<int>> subsets(vector<int>& nums) {
        dfs(nums, 0);
        return res;
    }
};

二进制枚举,迭代写法:

class Solution {
public:
    vector<vector<int>> subsets(vector<int>& nums) {
        vector<vector<int>> res;
        int n = nums.size();
        for (int i = 0; i < 1 << n; i ++ ) {
            vector<int> path;
            for (int j = 0; j < n; j ++ )
                if (i >> j & 1) 
                    path.push_back(nums[j]);
            res.push_back(path);
        }

        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ypuyu

如果帮助到你,可以请作者喝水~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值