LibLinear

最优化问题分类:

L2-regularized L1-Loss SVM: 二阶正则化一阶损失函数SVM

L2-regularized L2-Loss SVM: 二阶正则化二阶损失函数SVM

L2-regularized Logistic Regression:二阶正则化逻辑回归SVM

L1-regularized L2-loss Support Vector Classification: 一阶正则化二阶损失函数SVC

L1-regularized Logistic Regression:一阶正则化逻辑回归

问题求解:

1. L2-regularized L1- and L2-loss SVM (Solving Dual) 

参考论文:

1.1  A Dual Coordinate Descent Method for Large-scale Linear SVM (Dual)


SVMperf解决了L1-Loss SVM


2. L2-regularized Logistic Regression (Solving Primal) 

参考论文:

2.1 Trust region Newton method for large-scale logistic regression

http://www.csie.ntu.edu.tw/~cjlin/papers/logistic.pdf


3. L2-regularized L2-loss SVM (Solving Primal) 

参考论文:

3.1 LIBLINEAR: A Library for Large Linear Classification

3.2 Coordinate descent method for large-scale L2-loss linear SVM

http://www.csie.ntu.edu.tw/~cjlin/papers/cdl2.pdf  解决了L2-Loss SVM(Primal).


4. Multi-class SVM by Crammer and Singer 

参考论文:

4.1 On the learnability and design of output codes for multiclass problems

4.2 LIBLINEAR: A Library for Large Linear Classification


5. L1-regularized L2-loss Support Vector Machines 

参考论文:

5.1 LIBLINEAR: A Library for Large Linear Classification


6. L1-regularized Logistic Regression

参考论文:

6.1 LIBLINEAR: A Library for Large Linear Classification


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值