The learning of "Saliency Detection via Dense and Sparse Reconstruction" (L.-H. Zhang, X. Ruan, M.-H. Yang. IEEE International Conference on Computer Vision, Dec, 2013, pp. 2976-2983)
Use image boundaries via superpixels as background templates, from which dense and sparse appearance models are constructed. Improved saliency map by error propagation, object-biased Gaussian model, and use Bayesian inference integrate final saliency map.
- Model overview
- Generate superpixels using the simple linear iterative clustering (SLIC) algorithm, and extract the D-dimensional feature of each boundary segment and construct the background template set.
- Use dense reconstruction errors to measure the saliency of each region via Principal Component Analysis.
- Use sparse reconstruction error to measure the saliency of each region via sparse representation.
- Apply the K-means algorithm to cluster N image segments, then compare segment i between the other segments belonging to cluster k to smooth the reconstruction errors generated by dense and sparse appearance models.
- Utilize the similarity between pixel z and its corresponding segment n at scale s as the weight to average the multi-scal