2017-04-28 Saliency Detection via Dense and Sparse Reconstruction

本文介绍了使用深度和稀疏重建进行显著性检测的方法,结合超像素边界构建背景模板,通过主成分分析和稀疏表示计算重建误差。利用贝叶斯推断整合最终显著性地图,并通过对象偏置高斯模型细化显著性地图。
摘要由CSDN通过智能技术生成

The learning of "Saliency Detection via Dense and Sparse Reconstruction" (L.-H. Zhang, X. Ruan, M.-H. Yang. IEEE International Conference on Computer Vision, Dec, 2013, pp. 2976-2983)

Use image boundaries via superpixels as background templates, from which dense and sparse appearance models are constructed. Improved saliency map by error propagation, object-biased Gaussian model, and use Bayesian inference integrate final saliency map.

  1. Model overview
    1. Generate superpixels using the simple linear iterative clustering (SLIC) algorithm, and extract the D-dimensional feature of each boundary segment and construct the background template set.
    2. Use dense reconstruction errors to measure the saliency of each region via Principal Component Analysis.
    3. Use sparse reconstruction error to measure the saliency of each region via sparse representation.
    4. Apply the K-means algorithm to cluster N image segments, then compare segment i between the other segments belonging to cluster k to smooth the reconstruction errors generated by dense and sparse appearance models.
    5. Utilize the similarity between pixel z and its corresponding segment n at scale s as the weight to average the multi-scal
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值