4090服务器重装Ubuntu系统

1.准备启动盘

点击这里:启动盘准备详情

网络配置

网线可以使用黑板上贴的纸条,之前用的wifi,(办公室网络锁IP,WiFi可以通过校园网进行访问)
遇到的问题,校园的对外ip是172.16.158.38,之前连WiFi默认为该IP,后续重装系统ip变为172.16.157.211,外部网络无法通过校园vpn进行访问。
Q1 说是校园网更新了安全配置,隔壁的校园局域网也访问不了orz zzz,目前说是wifi版本的问题

一、Ubuntu安装步骤

1. 进入bois使用u盘启动,进入Ubuntu安装界面
每个主板进入bios的操作不一样,本服务器(微星)狂按del键。
2. 选择安装,一直下一步进入系统分区界面选择安装,一直下一步进入系统分区界面 3. 安装类型选择其他选项安装类型选择其他选项
4. 选择空闲,然后新建分区表对4T磁盘进行格式化
选择空闲,然后新建分区表对4T磁盘进行格式化

格式化之久只有一个空闲磁盘,大小为4T,然后对该磁盘进行分区挂载
在这里插入图片描述
双击4T空闲磁盘对磁盘进行分区,分成如下四个区:

分区名称设置
EFI分区10G,逻辑分区,空间起始位置,EFI system Partition
swap分区10G, 逻辑分区,空间起始位置,swap space
/ 挂载点500G,主分区,空间起始位置,Ext4格式
/home 挂载点500G,逻辑分区,空间起始位置,Ext4格式
无挂载点剩余所有空间 逻辑分区 空间起始位置 Ext4 格式

分区完成后效果如下图所示: 然后选择现在安装
在这里插入图片描述

剩余的空闲磁盘分为ext4文件类型,不用挂载,后续会挂载到clusters文件夹上:
使用命令行对下面三个分区进行挂载(sda5为上面的空闲磁盘目录)

mount /dev/sda5 /clusters/data_4090/user_data
mount /dev/nvme0n1p6 /clusters/data_4090_0/user_data
mount /dev/nvme0n1p3 /clusters/data_4090_1/user_data

挂在成功后 可用 df -h 查看挂载信息
在这里插入图片描述
挂载成功后设置开机自动挂载,否则重启后挂载点消失
首先查看UUID

blkid

将 /dev/sda5 /dev/nvme0n1p6 /dev/nvme0n1p3的 UUID 复制出来,然后写入到/etc/fstab中去

echo "UUID=e943fbb7-020a-4c64-a48a-2597eb2496df /vdb1 ext4 defaults 0 0" >> /etc/fstab

或者 编辑 /etc/fstab 配置文件 挂载(推荐)

vim /etc/fstab

在这里插入图片描述
最后输入df -h 查看挂载信息,没问题即可重启。

详情请看:这里

二、换源

打开软件与更新进行换源(这里不要关闭这个界面,否则后面下载很慢,虽然后面 确实提示是阿里云的镜像,但是慢的一批)
在这里插入图片描述

选择阿里云的源

三、安装nvidia驱动

点这里:nvidia驱动安装教程
1. 根据自己的显卡选择所需下载的NVIDIA驱动,在产品列表中选择对应显卡,然后操作系统选择Linux 64-bit,点击搜索后进行下载,
可以通过以下命令查看自己的显卡型号:

lspci | grep -i nvidia

本服务器配置如下图所示:(注:下载时注意不要有中文路径,并记住下载路径后续会用到),本服务器只能下载到根目录下的下载路径,然后再移到非中文路径下。
如图选择
2. 准备工作
2.1安装所需依赖
安装驱动前一定要更新软件列表和安装必要软件、依赖(必须),需要安装g++,gcc,make

sudo apt-get update   #更新软件列表
sudo apt-get install g++
sudo apt-get install gcc
sudo apt-get install make

2.2 卸载原有nvidia驱动

sudo apt-get remove --purge nvidia*

2.3. 禁用nouveau
打开blacklist.conf文件

sudo gedit /etc/modprobe.d/blacklist.conf

在blacklist.conf末尾添加以下两行,保存后关闭文本

blacklist nouveau
options nouveau modeset=0

在终端输入如下更新,更新结束后重启电脑

sudo update-initramfs -u

在这里插入图片描述
重启后输入如下指令,如无输出则已关闭nouveau

lsmod | grep nouveau

2.4 关闭secure boot
重启进入BIOS ,该微信主板的安全启动在 设置->安全->安全启动,关闭Secure Boot,并且清除安全启动密钥,保存后退出重启。
如果已经处于关闭状态,则打开重启,再关闭重启。
3. 安装过程
安装过程需要在非图形化界面中进行,输入以下命令进入非图形化界面

sudo telinit 3  #进入文本界面

进入文本操作界面后输入用户名密码登陆系统,

进入非图形化界面时,需要更改语言设置防止乱码:

export LANG="UTF-8"
export LANGUAGE="UTF-8"

关闭显示服务

sudo service gdm3 stop   #停止显示服务

给安装文件赋予权限,然后运行安装

cd {你的NVIDIA安装文件路径} #这里也可以直接在安装包文件夹打开终端
sudo chmod 777 NVIDIA-Linux-x86_64-430.26.run   #给你下载的驱动赋予可执行权限,才可以安装
sudo ./NVIDIA-Linux-x86_64-430.26.run  --no-opengl-files  #安装

安装过程中选项

        1.The distribution-provided pre-install script failed! Are you sure you want to continue?

        选择continue installation

        2.Would you like to register the kernel module souces with DKMS? This will allow DKMS to automatically build a new module, if you install a different kernel later?  

        选择 No 继续。

        3.问题大概是:Nvidia's 32-bit compatibility libraries? 选择 No 继续。

        4.Would you like to run the nvidia-xconfigutility to automatically update your x configuration so that the NVIDIA x driver will be used when you restart x? Any pre-existing x confile will be backed up.  

        ​​​​​​​选择 No  继续

安装完成后重新开启显示服务

sudo service gdm3 start   #重启显示服务,完成

进入系统后输入,看到相关信息后安装完成

nvidia-smi

在这里插入图片描述

四、安装anaconda

1.可以去清华大学开源软件镜像网站下载各种版本的conda:点这里
2.安装anaconda

bash Anaconda3-2021.05-Linux-x86_64.sh

按ENTER键继续,直至出现 Please answer ‘yes’ or ‘no’:
在这里插入图片描述
输入yes。然后会提示是否将Anaconda3安装到家目录下,如果是,输入ENTER,如果需要重新指定目录,则将指定的目录路径输入,可输入完整目录路径:比如输入:/hd10t/zhangxue/anaconda3在这里插入图片描述
3. 修改 ~/.bashrc文件
打开bashrc文件:

vim ~/.bashrc

输入 i 进入插入状态,可在最后加入:

export PATH="/hd10t/zhangxue/anaconda3/bin:$PATH"

esc退出编辑模式,:wq 保存并退出 ~/.bashrc 文件后:

source ~/.bashrc
  1. 验证
conda info --envs

如图,安装成功
在这里插入图片描述

Anaconda详细安装教程:点我
可能会遇到的问题:
root用户下没有conda

五、在虚拟环境内安装jupyterhub和notebook

进入root,创建名为hub的虚拟环境,配置jupyterhub

conda create -n hub python=3.10
conda activate hub
pip install jupyter jupyterhub jupyterhub-dummyauthenticator  -i https://pypi.tuna.tsinghua.edu.cn/simple

#1.第一步清楚node缓存
npm cache clean -f
#2.第二步:安装n模块(n模块是管理nodejs的版本的)
npm install -g n
#3.第三步:升级node.js到最新稳定版:
n stable
#4. 查看node版本(node -v) /查看node安装路径 (which node)

切换至淘宝源
npm config set registry=http://registry.npm.taobao.org/
sudo npm install -g configurable-http-proxy  --no-fund

可能会遇到的问题:
node版本低
换源
升级 node版本
安装教程:这里
jupyterhub配置文件修改:(在根目录的etc文件里创建如下路径和配置文件/etc/jupyterhub/jupyterhub_config.py,并修改访问权限)

sudo mkdir jupyterhub
cd jupyterhub/
sudo touch jupyterhub_config.py
sudo chmod 777 jupyterhub_config.py

在/etc/jupyterhub/jupyterhub_config.py配置文件中添加如下命令:

c.Authenticator.allow_all =True

在根目录新建adduser.py文件,

sudo su
touch adduser.py
chmod 777 adduser.py 

添加如下代码:修改账户和密码直至所有成员添加成功。

from os import system
users = [

'zhangzeen'    
]

pwd = 'jsj51021zze'

for u in users:
    # cmd = f'userdel {u}'
    # print(cmd)
    # system(cmd)

    cmd = f'sudo useradd -d /home/{u} -s /bin/bash -m {u}'
    print(cmd)
    system(cmd)

    cmd = f'sudo echo {u}:{pwd} | sudo chpasswd'
    print(cmd)
    system(cmd)

    
    # data_4090
    cmd = f'sudo mkdir /clusters/data_4090/user_data/{u}'
    print(cmd)
    system(cmd)

    cmd = f'sudo chown {u} /clusters/data_4090/user_data/{u}'
    print(cmd)
    system(cmd)

    cmd = f'sudo ln -s /clusters/data_4090/user_data/{u} /home/{u}/user_here'
    print(cmd)
    system(cmd)

    cmd = f'sudo mkdir /clusters/data_4090_0/user_data/{u}'
    print(cmd)
    system(cmd)

    cmd = f'sudo chown {u} /clusters/data_4090_0/user_data/{u}'
    print(cmd)
    system(cmd)


    cmd = f'sudo ln -s /clusters/data_4090_0/user_data/{u} /home/{u}/user_here_0'
    print(cmd)
    system(cmd)
    
    # data_4090_1
    cmd = f'sudo mkdir /clusters/data_4090_1/user_data/{u}'
    print(cmd)
    system(cmd)

    cmd = f'sudo chown {u} /clusters/data_4090_1/user_data/{u}'
    print(cmd)
    system(cmd)


    cmd = f'sudo ln -s /clusters/data_4090_1/user_data/{u} /home/{u}/user_here_1'
    print(cmd)
    system(cmd)
    
    print(' ')


五、服务器激活

在这里插入图片描述
在这里插入图片描述

六、使用

使用校园网访问http://172.16.157.211:8000/

看起来您提到的 "4090" 是指 NVIDIA GeForce RTX 4090 显卡型号。请注意,当前的PyTorch版本可能不支持最新的显卡型号,因此在使用新型号显卡之前,请确保您的PyTorch版本与该显卡兼容。 要在PyTorch中使用 GeForce RTX 4090 显卡,您需要进行以下步骤: 1. 确保您已经安装了最新版本的 GPU 驱动程序,以便支持 GeForce RTX 4090 显卡。 2. 安装与您的 GPU 驱动程序兼容的 CUDA 工具包。您可以从 NVIDIA 的官方网站上找到与您的 GPU 驱动程序和操作系统兼容的 CUDA 版本。 3. 安装与您的 CUDA 版本兼容的 PyTorch 版本。您可以使用以下命令安装 PyTorch: ```python pip install torch torchvision torchaudio ``` 请确保您安装了与您的 CUDA 版本相对应的 PyTorch 版本,以充分利用 GeForce RTX 4090 的性能优势。 一旦您完成了上述步骤,您可以按照之前提到的方式在 PyTorch 中使用 GeForce RTX 4090 显卡进行深度学习模型的训练和推断。记得将模型和数据加载到正确的设备上,例如: ```python import torch # 检查是否有可用的 GPU 设备 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 将模型加载到 GPU 设备上 model = YourModel().to(device) # 将数据加载到 GPU 设备上 inputs = your_data.to(device) # 在 GPU 上进行计算 outputs = model(inputs) ``` 通过这种方式,您可以利用 GeForce RTX 4090 的强大计算能力来加速深度学习任务。请确保您的代码和环境与所使用的硬件和软件版本兼容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值