CVPR 2025 | 医学影像加速进化:深度学习×多模态,精准诊断再升级

关注gongzhonghao【CVPR顶会精选

今天聊一个医学图像领域的前沿探索:结合空间感知卷积、扩散模型与视觉语言模型,从图像配准到合成分割,再到跨模态理解,打造了一个更加智能、鲁棒且可泛化的医学影像工具链。

无论是SACB-Net带来的精准对齐,Noise-Consistent Diffusion实现的高质量合成与稳健分割,还是BIOMEDICA推动的跨学科大规模影像-文本数据资源,这些工作共同指向了医学图像分析的未来方向:更精确、更全面、更可解释,有望在临床诊断与科研中发挥革命性作用。今天小图给大家精选3篇CVPR有关医学图像方向的论文,请注意查收!

论文一:SACB-Net: Spatial-awareness Convolutions for Medical Image Registration

方法:

作者将模型在3D配准骨干的关键层嵌入SACB,通过多尺度邻域聚合与相对位置感知调制卷积权重,使特征同时捕捉细粒度形态与全局拓扑,从而更准确地预测致密形变场。 训练阶段以固定图与经形变后的移动图之间的相似性为主目标,并加入空间平滑与拓扑一致性等正则,使形变既贴合解剖边界又保持连续稳定。推理时输入体数据对,经SACB-Net输出位移场并完成重采样对齐;消融与对比显示在多项指标上持续领先,同时几乎不引入额外延迟。

图片

创新点:

  • 提3D Spatial-Awareness Convolution Block,显式注入局部与全局空间上下文,强化方

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值