函数作用:
返回一个包含输入input中非零元素索引的张量。输出张量中的每行包含input中非零元素的索引(也就是一行记录一个非零元素的位置信息)。如果输入input 有n维,则输出的索引张量out的size为 z*n,z 表示输入张量 input 中所有非零元素的个数。
print(torch.nonzero(torch.Tensor([[0.7, 0.0, 0.0, 0.0],
[0.0, 0.3, 0.0, 0.0],
[0.0, 0.0, 1.8, 0.0],
[0.0, 0.0, 0.0,-0.4]])))
输出:
tensor([[0, 0],
[1, 1],
[2, 2],
[3, 3]])
输出out的理解:这个例子input是2维的,一共有4个非0元素,所以输出是一个4×2的张量,表示每个非0元素的索引(位置信息)。如out的第0行[0,0]表示input第一个非0元素的位置信息,即表示input的第0行的第0个元素是非0元素,同理,out的第1行[1,1],表示input第1行第1个元素是非0元素,等等。
再把input设为一个3维张量,
a = torch.Tensor([
[
[1,1,1,0,1],
[1,0,0,0,1]
],
[
[1,1,1,0,1],
[1,0,0,0,1]
]
])
print(a)
b = torch.nonzero(a)
print(b)
print(b[:,0])
print(b[:,1])
print(b[:,2])
输出:
tensor([[[1., 1., 1., 0., 1.],
[1., 0., 0., 0., 1.]],
[[1., 1., 1., 0., 1.],
[1., 0., 0., 0., 1.]]])
tensor([[0, 0, 0],
[0, 0, 1],
[0, 0, 2],
[0, 0, 4],
[0, 1, 0],
[0, 1, 4],
[1, 0, 0],
[1, 0, 1],
[1, 0, 2],
[1, 0, 4],
[1, 1, 0],
[1, 1, 4]])
tensor([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1])
tensor([0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1])
tensor([0, 1, 2, 4, 0, 4, 0, 1, 2, 4, 0, 4])
这个out张量的意思是:
out大小为12*3,说明input有12个非0元素,3表示input的维度是3。第0行第0列第0个元素非0,第0行第0列第1个元素非0,……,第1行第1列第0个元素非0,第1行第1列第4个元素非0.