torch.nonzero

import torch
a=torch.randint(-1,2,(10,),dtype=torch.int)
print(a)
print(a.size())
print(torch.nonzero(a))
print(torch.nonzero(a).size())



Output:
-------------------------------------------------------------------------
    tensor([ 0, -1,  1,  1, -1,  0,  1, -1, -1, -1], dtype=torch.int32)
    torch.Size([10])
    tensor([[1],
            [2],
            [3],
            [4],
            [6],
            [7],
            [8],
            [9]])
    torch.Size([8, 1])
-------------------------------------------------------------------------

也就是说torch.nonezero()的作用就是找到tensor中所有不为0的索引。(要注意返回值的size)

参考 torch.nonzero - 云+社区 - 腾讯云

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wanderer001

ROIAlign原理

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值