梯度下降法(五)

1.梯度下降法

梯度下降法(Gradient Descent,GD)不是一个机器学习方法,而是一种基于搜索的最优化方法。
根据上文提到的线下回归算法中的损失函数J(a,b),我们目标就是寻找a,b,使得损失函数最小,这时我们可以利用梯度下降法来对损失函数参数进行优化,使得损失函数最小。
假设损失函数为J(θ),θ是一个变量,为了更好理解,θ不是向量,假设J(θ)关于θ的函数为:
在这里插入图片描述
在这里插入图片描述
该函数为一个对称的曲线,要想找到该曲线的最小值,如果简单通过随机选择1000个值或更多的值进行带入,选取其中最小的损失值,那是不合理的。
而梯度下降法就是通过抓住参数与损失函数之间的导数(即梯度)来辨别曲线的方向,然后找到损失函数的极值或者朝最小损失函数不断靠拢。导数代表θ单位变化时,J相应的变化,同时导数也代表了损失函数变化的方向,即如下图所示,
在这里插入图片描述
说白点我们把整个寻找最小损失函数的过程可以看成是一个下山的过程,如何找到山谷。如果取得参数θ是在曲线对称轴左边,对θ求导后,该点斜率为负数,往左走为是上坡,往右走为下坡,确定了方向,那么选多大的步伐往下走呢,即:
在这里插入图片描述
但是步伐太大容易越过最小值,一直找不到合适的点。
在这里插入图片描述
如果步伐太小则效率太低,要走很多步,如下图所示:

在这里插入图片描述
因此选择合适η很重要,η称为学习率(learning rate),η的取值影响获得最优解的速度;η取值不合适,甚至得不到最优解;η是梯度下降法的一个超参数。

2.线性回归中梯度下降法

上节中我们知道线性回归中的目标是:
在这里插入图片描述
将下面多元线性回归函数带入上式:
在这里插入图片描述
得使:
在这里插入图片描述
即多元线性回归函数的梯度为:
在这里插入图片描述
有时候样本太大,将损失函数除以m,即为:
在这里插入图片描述
有时也为:
在这里插入图片描述
一般将损失写为:
在这里插入图片描述

3.Python实现简单二次函数梯度下降法

import numpy as np
from matplotlib import pyplot as plt
import math

def dJ(theta):
    return 2*(theta-2.5)
def J(theta):
    return (theta-2.5)**2-1
def gradient_descent(initial_theta,eta,epsilon=1e-8):  
	theta=initial_theta   
	theta_history.append(initial_theta) 
    while True:
        gradient=dJ(theta)      
	last_theta=theta       
	theta=theta-eta*gradient       
	theta_history.append(theta)       
	if(abs(J(theta)-J(last_theta))<epsilon):
            break
def plot_theta_history():  
	plt.plot(plot_x,J(plot_x))  
	plt.plot(np.array(theta_history),J(np.array(theta_history)),color='r',marker='o')
 	plt.xlabel('θ')
	plt.ylabel('J(θ)')
	plt.show()

plot_x=np.linspace(-1,6,141)
plot_y=(plot_x-2.5)**2-1以下图标有改动
eta=0.2
theta_history=[]
gradient_descent(0.,eta)
plot_theta_history()

4.线性回归梯度下降法Python实现

import numpy as np
from matplotlib import pyplot as plt
import math
def J(theta,x_b,y):
    try:
        return np.sum((y-x_b.dot(theta))**2)/len(x_b)
    except:
        return float('inf')
 def dJ(theta,x_b,y):
    res=np.empty(len(theta))
    res[0]=np.sum(x_b.dot(theta)-y)
    for i in range(1,len(theta)):
        res[i]=(x_b.dot(theta)-y).dot(x_b[:,i])
    return res*2/len(x_b)
 def gradient_descent(X_b,y,initial_theta,eta,n_iters=1e4,epsilon=1e-8):  
    
    theta=initial_theta   
    i_iter=0.0
    
    while i_iter < n_iters:              #防止无限循环
        gradient = dJ(theta,X_b,y)      
        last_theta = theta    
        theta = theta-eta*gradient       
              
        if(abs(J(theta,X_b,y)-J(last_theta,X_b,y)) < epsilon):
            break
        i_iter += 1
    return theta
x=2* np.random.random(size=100)
y=x*3.+4. + np.random.normal(size=100)
X_b=np.hstack([np.ones((len(x),1)),x.reshape(-1,1)])
initial_theta=np.zeros(X_b.shape[1])
eta=0.01
theta=gradient_descent(X_b,y,initial_theta,eta)
print(theta)
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值