【动手学习pytorch笔记】14.GoogLeNet

GoogLeNet

前面我们看了那么多卷积神经网络构建的方式,有选3 * 3卷积核的,有5 * 5卷积核的,有7 * 7卷积核的;有maxpooling,有avgpooling,那么哪种比较好呢?GoogLeNet:我全都要

Inception块

在这里插入图片描述

盗梦空间Inception块只改变通道数,不改变图片大小

蓝色的块用来抽取图片信息

白色块用来改变通道数

在这里插入图片描述

输入 192 * 28 * 28

通道数在每层发生的变化情况

回忆一下,一组卷积核处理一个输入:一个卷积核处理一个通道,最后结果相加得到一个通道,多个卷积核组处理得到多个通道。

输出的通道数是由你有多少组 卷积核组决定的

输入的通道数决定的是每个卷积核组里有多少个卷积核

和 3 * 3 ,5 * 5 的卷积核相比,Inception块的参数更少

​ 如 3 * 3 的卷积核有:192 * 3 * 3 * 256 = 442368 个参数

​ 5 * 5 的卷积核有:192 * 5 * 5 * 256 = 1228800 个参数

Inception块只有: 192 * 96 + 192 * 16 + 192 * 64 + 192 * 32 + 16 * 5 * 5 * 32 + 96 * 9 * 128 = 163328 个参数

当然计算速度上也是Inception块更快

在这里插入图片描述

GoogLeNet模型结构

在这里插入图片描述

AlexNet和GoogLeNet对比

在这里插入图片描述

套公式也能算出每层的图片宽高是怎么变化的

Inception块的后续变种

在这里插入图片描述

代码实现

Inception块

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l


class Inception(nn.Module):

    # c1--c4是每条路径的输出通道数

    def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):
        super(Inception, self).__init__(**kwargs)

        # 线路1,单1x1卷积层

        self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)

        # 线路2,1x1卷积层后接3x3卷积层

        self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)
        self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)

        # 线路3,1x1卷积层后接5x5卷积层

        self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)
        self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)

        # 线路4,3x3最大汇聚层后接1x1卷积层

        self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
        self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)

    def forward(self, x):
        p1 = F.relu(self.p1_1(x))
        p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
        p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
        p4 = F.relu(self.p4_2(self.p4_1(x)))

        # 在通道维度上连结输出

        return torch.cat((p1, p2, p3, p4), dim=1)

继承nn.Module

cat((p1, p2, p3, p4), dim=1) 最后在 dim = 1 这个维度(通道数)上拼接,dim = 0 是批次数

按图实现几个stage

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
                   nn.ReLU(),
                   nn.Conv2d(64, 192, kernel_size=3, padding=1),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
                   Inception(256, 128, (128, 192), (32, 96), 64),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
                   Inception(512, 160, (112, 224), (24, 64), 64),
                   Inception(512, 128, (128, 256), (24, 64), 64),
                   Inception(512, 112, (144, 288), (32, 64), 64),
                   Inception(528, 256, (160, 320), (32, 128), 128),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
                   Inception(832, 384, (192, 384), (48, 128), 128),
                   nn.AdaptiveAvgPool2d((1,1)),
                   nn.Flatten())

net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))

看看模型每层情况

X = torch.rand(size=(1, 1, 96, 96))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t', X.shape)

输出

Sequential output shape:	 torch.Size([1, 64, 24, 24])
Sequential output shape:	 torch.Size([1, 192, 12, 12])
Sequential output shape:	 torch.Size([1, 480, 6, 6])
Sequential output shape:	 torch.Size([1, 832, 3, 3])
Sequential output shape:	 torch.Size([1, 1024])
Linear output shape:	 torch.Size([1, 10])

训练

lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

在这里插入图片描述

GoogLeNet效果很好,而且比较容易训练的,我970m的显卡都能跑得动,前面VGG和NiN都不行。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
动手深度学习 pytorch.pdf》是一本关于深度学习PyTorch框架的学习教材。它由苏剑林等人编写,以PyTorch作为工具,全面介绍了深度学习的基本原理和应用。该教材主要分为6个部分,包括深度学习基础、计算机视觉、自然语言处理、生成对抗网络、深度强化学习和工作实践。通过大量的例子和实践,读者可以深入理解深度学习的核心概念以及如何使用PyTorch实现深度学习模型。 首先,教材通过深度学习基础部分介绍了神经网络的基本原理、损失函数、优化算法等核心知识。接着,计算机视觉部分详细解释了图像分类、目标检测、图像风格转换等任务的实现方法。在自然语言处理部分,教材展示了如何用深度学习模型进行文本分类、语义理解等任务。生成对抗网络部分讲解了生成模型、判别模型和生成对抗训练等关键概念。深度强化学习部分介绍了如何使用深度学习与强化学习相结合解决控制问题。最后的工作实践部分通过实际场景案例,指导读者如何将深度学习应用到实际项目中。 《动手深度学习 pytorch.pdf》内容详实,既有理论知识又有实际应用的案例,适合既想理解深度学习基本原理又想动手实践的读者。无论是初学者还是有一定基础的学习者,都可以通过这本教材系统地学习深度学习PyTorch。总之,这本教材是学习深度学习的一本宝典,可以帮助读者快速入门并深入掌握深度学习PyTorch的使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值