大数据产业创新服务媒体
——聚焦数据 · 改变商业
在一间明亮的会议室里,一位企业决策者正紧张地准备着即将到来的季度业绩汇报。他打开了公司最近采购的对话式BI工具,希望能快速获取一些关键的业务指标分析。他问道:“今年第二季度的净利润比去年同期增长了多少?”工具迅速回应,但给出的答案却让他皱起了眉头。不仅数字与他的预期大相径庭,而且缺乏足够的解释来支持这一结果。这种准确率不高和解释性不强的问题,让他对这项新技术的实际价值产生了怀疑。
这种场景在许多企业中并不罕见,对话式BI工具虽然便捷,但在处理复杂数据分析时常常力不从心。然而,随着Kyligence最新发布的企业级AI解决方案的问世,这一局面有望得到根本性的改变。4月11日,Kyligence 2024 数智论坛暨春季发布会成功召开。Kyligence 正式发布全新的企业级 AI 解决方案,在准确率和可解释性两个方面实现了重要突破。那么,Kyligence是怎么做到的呢?
准确率与可解释性,是对话式BI的两大难题
在当今数据驱动的商业环境中,基于大模型的对话式数据分析工具,极大地促进了企业决策的效率和质量。然而,随着这些工具的广泛应用,它们的两大核心挑战——准确率和可解释性——逐渐浮现成为行业发展的瓶颈。
准确率的重要性与难点
准确率对于企业决策的影响不言而喻,一个准确的数据分析结果能够为企业带来清晰的市场洞察、有效的战略规划和精确的执行方案。然而,当决策者依赖于不准确的数据时,可能会导致资源的浪费、战略失误甚至企业声誉的损害。在对话式数据分析工具中,准确率的问题尤为突出。
当前大模型在对话式数据分析中准确率不高的原因多种多样,其中,自然语言的歧义性是一个主要障碍。用户的问题可能存在多种解释,而模型可能无法准确捕捉到用户的真正意图。数据质量问题也不容忽视,如果输入模型的数据存在错误或不一致,那么输出的分析结果自然也会受到影响。此外,模型本身的限制也是一个因素。许多模型在训练时使用的是通用数据集,这可能导致它们在特定行业或领域的应用中表现不佳。
可解释性的重要性与难点