测量数目增加,估计出来的状态的协方差减小

  考虑这样一个问题,
y = A x + ε (1) y = A x + \varepsilon \tag{1} y=Ax+ε(1)
其中 y y y为测量, A A A为测量关系矩阵, x x x为状态, ε \varepsilon ε为噪声(服从高斯分布)。已知 y y y A A A ε \varepsilon ε未知,请求解 x x x


  加权最小二乘算法
权重矩阵 W W W取各个测量的标准差之逆,
W = [ 1 σ y 1 1 σ y 2 ⋱ 1 σ y n ] (2) W = \begin{bmatrix} \frac{1}{\sigma _{y_1}} & & &\\ & \frac{1}{\sigma _{y_2}} & &\\ & & \ddots &\\ & & & \frac{1}{\sigma _{y_n}}\\ \end{bmatrix} \tag{2} W=σy11σy21σyn1(2)
则有,
W y = W A x (3) Wy=WAx \tag{3} Wy=WAx(3)
( W A ) T W y = ( W A ) T W A x (4) (WA)^TWy=(WA)^TWAx \tag{4} (WA)TWy=(WA)TWAx(4)
[ ( W A ) T W A ] − 1 ( W A ) T W y = x (5) [(WA)^TWA]^{-1}(WA)^TWy=x \tag{5} [(WA)TWA]1(WA)TWy=x(5)
( A T W T W A ) − 1 A T W T W ⋅ y = x (6) (A^TW^TWA)^{-1}A^TW^TW \cdot y=x \tag{6} (ATWTWA)1ATWTWy=x(6)
W T W W^TW WTW为各个测量的方差之逆,即测量的协方差矩阵之逆,记 C = W T W C=W^TW C=WTW,故公式(6)可写成,
( A T C A ) − 1 A T C ⋅ y = x (7) (A^TCA)^{-1}A^TC\cdot y =x \tag{7} (ATCA)1ATCy=x(7)
又测量 y y y的协方差矩阵为 C − 1 C^{-1} C1
C − 1 = [ σ y 1 2 σ y 2 2 ⋱ σ y n 2 ] (8) C^{-1}=\begin{bmatrix} \sigma ^2_{y_1} & & &\\ & \sigma ^2_{y_2} & &\\ & & \ddots &\\ & & & \sigma ^2_{y_n}\\ \end{bmatrix} \tag{8} C1=σy12σy22σyn2(8)


  根据加权最小二乘算法可知,求解出的状态的协方差矩阵为,
( A T C A ) − 1 A T C ⋅ C − 1 ⋅ [ ( A T C A ) − 1 A T C ] T (A^TCA)^{-1}A^TC\cdot C^{-1} \cdot [(A^TCA)^{-1}A^TC]^T (ATCA)1ATCC1[(ATCA)1ATC]T
( A T C A ) − 1 A T ⋅ [ ( A T C A ) − 1 A T C ] T (A^TCA)^{-1}A^T \cdot [(A^TCA)^{-1}A^TC]^T (ATCA)1AT[(ATCA)1ATC]T
( A T C A ) − 1 A T ⋅ C T A ( A T C A ) − T (A^TCA)^{-1}A^T \cdot C^TA(A^TCA)^{-T} (ATCA)1ATCTA(ATCA)T
C C C是对角阵,有 C T = C C^T=C CT=C
( A T C A ) − T (A^TCA)^{-T} (ATCA)T
( A T C T A ) − 1 (A^TC^TA)^{-1} (ATCTA)1
( A T C A ) − 1 (9) (A^TCA)^{-1} \tag{9} (ATCA)1(9)
A T C A A^TCA ATCA分析,增加观测数目之后,其变为,
[ A A 0 ] T [ C C 0 ] [ A A 0 ] \begin{bmatrix} A\\ A_0 \end{bmatrix} ^T \begin{bmatrix} C & \\ & C_0 \end{bmatrix} \begin{bmatrix} A \\ A_0 \end{bmatrix} [AA0]T[CC0][AA0]
[ A T A 0 T ] [ C C 0 ] [ A A 0 ] \begin{bmatrix} A^T & A^T_0 \end{bmatrix} \begin{bmatrix} C &\\ & C_0 \end{bmatrix} \begin{bmatrix}A \\ A_0 \end{bmatrix} [ATA0T][CC0][AA0]
[ A T C A 0 T C 0 ] [ A A 0 ] \begin{bmatrix} A^TC & A^T_0C_0 \end{bmatrix} \begin{bmatrix} A\\ A_0 \end{bmatrix} [ATCA0TC0][AA0]
A T C A + A 0 T C 0 A 0 A^TCA+A^T_0C_0A_0 ATCA+A0TC0A0
A 0 T C 0 A 0 A^T_0C_0A_0 A0TC0A0正定,该值是增加的,它的逆,即协方差矩阵是减小的。得证!


  测量铅笔的小例子
已知用直尺对铅笔长度进行了 n n n次测量,每次测量结果为 y 1 , y 2 , . . . , y n y_1,y_2,...,y_n y1,y2,...,yn,每次测量都服从同一个正态分布 N ( 0 , σ 2 ) N(0,\sigma ^2) N(0,σ2),状态 x x x表示铅笔长度。
  依据加权最小二乘算法,测量向量为 [ y 1 , y 2 , . . . , y n ] T [y_1,y_2,...,y_n]^T [y1,y2,...,yn]T,测量关系矩阵 A A A为,
A = [ 1 1 ⋮ 1 ] A = \begin{bmatrix} 1 \\ 1\\ \vdots \\ 1 \end{bmatrix} A=111
权重矩阵 W W W为,
W = [ 1 σ 1 σ ⋱ 1 σ ] W=\begin{bmatrix} \frac{1}{\sigma} & & &\\ & \frac{1}{\sigma} & &\\ & & \ddots & \\ & & & \frac{1}{\sigma} \end{bmatrix} W=σ1σ1σ1
则,加权最小二乘解为,
x = ( A T C A ) − 1 A T C ⋅ y x=(A^TCA)^{-1}A^TC\cdot y x=(ATCA)1ATCy
其中 C C C W T W W^TW WTW,故
A T C A = n σ 2 A^TCA=\frac{n}{\sigma ^2} ATCA=σ2n
A T C = [ 1 σ 2 1 σ 2 ⋯ 1 σ 2 ] A^TC=\begin{bmatrix} \frac{1}{\sigma ^2} & \frac{1}{\sigma ^2} & \cdots & \frac{1}{\sigma ^2} \end{bmatrix} ATC=[σ21σ21σ21]
( A T C A ) − 1 ⋅ A T C = σ 2 n [ 1 σ 2 1 σ 2 ⋯ 1 σ 2 ] = 1 n [ 1 1 ⋯ 1 ] (A^TCA)^{-1} \cdot A^TC = \frac{\sigma ^2}{n}\begin{bmatrix} \frac{1}{\sigma ^2} & \frac{1}{\sigma ^2} & \cdots & \frac{1}{\sigma ^2} \end{bmatrix} = \frac{1}{n} \begin{bmatrix} 1 & 1 & \cdots & 1\end{bmatrix} (ATCA)1ATC=nσ2[σ21σ21σ21]=n1[111]
x = 1 n [ 1 1 ⋯ 1 ] [ y 1 y 2 ⋮ y n ] = y 1 + y 2 + ⋯ + y n n (10) x=\frac{1}{n} \begin{bmatrix} 1 & 1 & \cdots& 1\end{bmatrix} \begin{bmatrix}y_1 \\ y_2 \\ \vdots\\ y_n \end{bmatrix}=\frac{y_1+y_2+\cdots+y_n}{n} \tag{10} x=n1[111]y1y2yn=ny1+y2++yn(10)
状态的协方差矩阵为,
( A T C A ) − 1 = σ 2 n (11) (A^TCA)^{-1}=\frac{\sigma ^2}{n} \tag{11} (ATCA)1=nσ2(11)
故由上式也可知,随着观测数目的增加,状态的协方差是减小的。


  量铅笔长度问题的另一种思路


高斯分布的性质:

(1)已知随机变量 X X X服从 N ( μ 1 , σ 1 2 ) N(\mu _1, \sigma _1^2) N(μ1,σ12),随机变量 Y Y Y服从 N ( μ 2 , σ 2 2 ) N(\mu _2, \sigma _2^2) N(μ2,σ22),则随机变量 X + Y X+Y X+Y服从 N ( μ 1 + μ 2 , σ 1 2 + σ 2 2 ) N(\mu _1+\mu_2, \sigma _1^2+\sigma_2^2) N(μ1+μ2,σ12+σ22)

(2)已知随机变量 X X X服从 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2),有一常数 a a a,则随机变量 a X aX aX服从 N ( a μ , a 2 σ 2 ) N(a\mu,a^2\sigma^2) N(aμ,a2σ2)


  故已知随机变量 y i y_i yi服从分布 N ( 0 , σ 2 ) N(0,\sigma^2) N(0,σ2),随机变量 x x x
x = y 1 + y 2 + ⋯ + y n n x=\frac{y_1+y_2+\cdots+y_n}{n} x=ny1+y2++yn
的均值为0,方差为
( 1 n ) 2 ⋅ ( σ 2 + σ 2 + ⋯ + σ 2 ) = 1 n 2 ⋅ n σ 2 = σ 2 n (\frac{1}{n})^2\cdot(\sigma^2+\sigma^2+\cdots+\sigma^2) = \frac{1}{n^2} \cdot n\sigma^2 = \frac{\sigma^2}{n} (n1)2(σ2+σ2++σ2)=n21nσ2=nσ2
同样的,推导出了状态的协方差!

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看REAdMe.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看REAdMe.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看READme.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YMWM_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值