求矩阵的高次幂

Cayley-Hamilton定理说明,对于任意一个 n n n阶矩阵 A A A,一定存在着多项式 φ ( λ ) \varphi(\lambda) φ(λ),使得 φ ( A ) = 0 \varphi(A)=0 φ(A)=0

例1

A = [ − 3 4 − 3 5 ] A=\begin{bmatrix} -3 & 4 \\ -3 & 5 \end{bmatrix} A=[3345],求 A 1000 A^{1000} A1000

解答:

(1)求解矩阵 A A A的特征值,
∣ A − λ I ∣ = ∣ − 3 − λ 4 − 3 5 − λ ∣ = ( λ − 3 ) ( λ + 1 ) \lvert A-\lambda I \rvert=\begin{vmatrix} -3-\lambda & 4 \\ -3 & 5-\lambda \end{vmatrix}=(\lambda-3)(\lambda+1) AλI=3λ345λ=(λ3)(λ+1)
解得 λ 1 = 3 , λ 2 = − 1 \lambda_1=3,\lambda_2=-1 λ1=3,λ2=1
(2)根据Cayley-Hamilton定理可知,
A 1000 = P ( A ) + a A + b I A^{1000}=P(A)+aA+bI A1000=P(A)+aA+bI
λ 1000 = P ( λ ) + a λ + b (1) \lambda^{1000}=P(\lambda)+a\lambda+b \tag{1} λ1000=P(λ)+aλ+b(1)
(3)将 λ 1 = 3 \lambda_1=3 λ1=3代入公式(1)可得,
3 a + b = 3 1000 (2) 3a+b=3^{1000} \tag{2} 3a+b=31000(2)
λ 2 = − 1 \lambda_2=-1 λ2=1代入公式(2)可得,
− a + b = 1 (3) -a+b=1 \tag{3} a+b=1(3)

(4)联立公式(2)和公式(3)可解得,
a = 1 4 ⋅ 3 1000 − 1 4 a=\frac{1}{4}\cdot 3^{1000}-\frac{1}{4} a=413100041
b = 1 4 ⋅ 3 1000 + 3 4 b=\frac{1}{4}\cdot3^{1000}+\frac{3}{4} b=4131000+43
故,
A 1000 = a A + b I = [ − 1 2 ⋅ 3 1000 + 3 2 3 1000 − 1 − 3 4 ⋅ 3 1000 + 3 4 3 2 ⋅ 3 1000 − 1 2 ] A^{1000} = aA+bI=\begin{bmatrix} -\frac{1}{2}\cdot 3^{1000}+\frac{3}{2} & 3^{1000}-1 \\ -\frac{3}{4} \cdot 3^{1000} + \frac{3}{4} & \frac{3}{2}\cdot 3^{1000}-\frac{1}{2} \end{bmatrix} A1000=aA+bI=[2131000+234331000+43310001233100021]

例2

A = [ 2 − 1 − 1 0 − 2 0 4 − 1 − 3 ] A = \begin{bmatrix} 2 & -1 & -1 \\ 0 & -2 & 0\\ 4 & -1 & -3 \end{bmatrix} A=204121103,求 A 20 A^{20} A20
解答:
(1)求解矩阵 A A A的特征值,
∣ A − λ I ∣ = ∣ 2 − λ − 1 − 1 0 − 2 − λ 0 4 − 1 − 3 − λ ∣ = − ( λ + 2 ) 2 ( λ − 1 ) \lvert A -\lambda I \rvert =\begin{vmatrix} 2-\lambda & -1 & -1 \\ 0 & -2-\lambda & 0 \\ 4 & -1 & -3-\lambda\end{vmatrix} = -(\lambda+2)^2(\lambda-1) AλI=2λ0412λ1103λ=(λ+2)2(λ1)
解答 λ 1 = 1 , λ 2 = λ 3 = − 2 \lambda_1=1,\lambda_2=\lambda_3=-2 λ1=1,λ2=λ3=2
(2)根据Cayley-Hamilton定理可知,
A 20 = P ( A ) + a A 2 + b A + c I A^{20}=P(A)+aA^2+bA+cI A20=P(A)+aA2+bA+cI
λ 20 = P ( λ ) + a λ 2 + b λ + c (1) \lambda^{20}=P(\lambda)+a\lambda^2+b\lambda+c \tag{1} λ20=P(λ)+aλ2+bλ+c(1)
(3)将 λ 1 = 1 \lambda_1=1 λ1=1代入公式(1)可得,
a + b + c = 1 (2) a+b+c=1 \tag{2} a+b+c=1(2)
注意:P(1) = 0。
λ 2 = − 2 \lambda_2=-2 λ2=2代入公式(1)可得,
4 a − 2 b + c = ( − 2 ) 20 (3) 4a-2b+c=(-2)^{20} \tag{3} 4a2b+c=(2)20(3)
考虑到-2是矩阵 A A A的二重特征值,那么当 λ = − 2 \lambda=-2 λ=2时,有下式成立,
20 λ 19 = P ′ ( λ ) + 2 a λ + b 20\lambda^{19}=P'(\lambda)+2a\lambda+b 20λ19=P(λ)+2aλ+b
即,
− 4 a + b = 20 ( − 2 ) 19 (4) -4a+b=20(-2)^{19} \tag{4} 4a+b=20(2)19(4)
(4)联立公式(2)~(4)可解得,
a = 29 9 ⋅ 2 20 + 1 9 a = \frac{29}{9}\cdot2^{20}+\frac{1}{9} a=929220+91
b = 26 9 ⋅ 2 20 + 4 9 b = \frac{26}{9}\cdot 2^{20} +\frac{4}{9} b=926220+94
c = − 55 9 ⋅ 2 20 + 4 9 c=-\frac{55}{9}\cdot2^{20}+\frac{4}{9} c=955220+94
故,
A 20 = a A 2 + b A + c I A^{20}=aA^2+bA+cI A20=aA2+bA+cI

  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YMWM_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值