[luogu1801] 黑匣子_NOI导刊2010提高(06)

传送门
照理来说很久很久以前就做过这个题(并且做过很多很多遍),但是从来没有写过…
于是趁这个机会学了Treap(好吧感觉就是对着蓝书抄了一遍不知道记住了多少),发现Treap比我想象中简单好多。然后正解是对顶堆吧。用优先队列不开O2和Treap根本没差多少啊0 0

Treap版
那个root[2]是最开始开了2e5的数组发现其实只用了root[1]

#include<bits/stdc++.h>
using namespace std;
const int N=200002;
int n,m,a[N],u[N];
struct node{
	int r,v,s;
	node *ch[2];
	
	int cmp(int x){ return x>v; }
	
	node(int v):v(v) { ch[0]=ch[1]=NULL;r=rand();s=1; }
	
	void maintain(){
		s=1;
		if (ch[0]!=NULL) s+=ch[0]->s;
		if (ch[1]!=NULL) s+=ch[1]->s;
	}
};
node* root[2];

void read(int &x){
	char ch=getchar();x=0;int w=1;
	for(;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') w=-1;
	for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
	x*=w;
}

void rorate(node* &o,int d){
	node* k=o->ch[d^1];o->ch[d^1]=k->ch[d];k->ch[d]=o;
	o->maintain();k->maintain();o=k;
}

void add(int x,node* &o){
	if (o==NULL) o=new node(x);
	 else{
	 	int d=o->cmp(x);
	 	add(x,o->ch[d]);
	 	if (o->ch[d]->r>o->r) rorate(o,d^1);
	 }
	o->maintain();
}

int get(node* &o,int k){
//	if (o==NULL) return 0;
	int s=(o->ch[0]==NULL?0:o->ch[0]->s);
	if (k==s+1) return o->v;
	 else if (k<=s) return get(o->ch[0],k);
	  else return get(o->ch[1],k-s-1);
}

int main(){
	freopen("1.in","r",stdin);
	freopen("1.out","w",stdout);
	read(n);read(m);
	for(int i=1;i<=n;i++) read(a[i]);
	for(int i=1;i<=m;i++) read(u[i]);
	int j=1;
	for(int i=1;i<=n;i++){
		add(a[i],root[1]);
		for(;u[j]==i;cout<<get(root[1],j)<<endl,j++);
	} 
	return 0;
}

然后是堆

#include<bits/stdc++.h>
using namespace std;
const int N=200002;
int n,m,a[N],u[N];
priority_queue<int> h1;
priority_queue<int,vector<int>,greater<int> > h2;

void read(int &x){
	char ch=getchar();x=0;int w=1;
	for(;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') w=-1;
	for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
	x*=w;
}

int main(){
	freopen("1.in","r",stdin);
	freopen("1.out","w",stdout);
	read(n);read(m);
	for(int i=1;i<=n;i++) read(a[i]);
	for(int i=1;i<=m;i++) read(u[i]);
	int j=1;h1.push(-2e9-1);
	for(int i=1;i<=n;i++){
		if (a[i]<h1.top()) h2.push(h1.top()),h1.pop(),h1.push(a[i]);
		 else h2.push(a[i]);
		for(;u[j]==i;j++){
			int x=h2.top();
			cout<<x<<endl;
			h1.push(x);h2.pop();
		}
	}
	return 0;
}
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值