TopCoder SRM 666 Div1 444 SumOverPermutations

53 篇文章 0 订阅
27 篇文章 0 订阅

感觉是道好题~TC好多题就这样,想半天,然后代码几行就完了。
原来碰到这种排列的dp就一脸懵逼,因为状态特别难设计,每次都感觉只会状压,现在终于有点get到其中的套路了。

在这题里我们可以发现几个事实

  • 每个位置对答案的贡献只和它左右两边是否比它早确定有关
  • 我们可以通过将 i i i插入 1 1 1 i − 1 i-1 i1的排列中得到所有 1 1 1 i i i的所有排列

于是我们可以弄一个 f [ o ] [ i ] [ j ] f[o][i][j] f[o][i][j]表示到第 o o o个位置,这个位置在前 o o o个里面是第 i i i个确定的,以及前一个位置是否比它早确定, j = 0 j=0 j=0表示早, j = 1 j=1 j=1表示晚。
转移的话就枚举一下第 o + 1 o+1 o+1个位置是第几个被确定的。然后这样复杂度还是 O ( n 3 ) O(n^3) O(n3)爆炸,于是就加个前缀和优化,再顺便滚动数组一下就过了。

然而,我一开始T了!!!震惊,说好的TC一秒1e9呢(雾),欺骗感情!!
结果发现是我手动取模爆炸了。。。。。。改了就过了。。。。。。

#include <bits/stdc++.h>
#define fr(i,x,y) for(int i=x;i<=y;i++)
#define ll long long
using namespace std;
const int N=4001;
const int p=1e9+7;
ll f[2][N][2];

template<class T> void checkmin(T &a,const T &b) { if (b<a) a=b; } 
template<class T> void checkmax(T &a,const T &b) { if (b>a) a=b; }

class SumOverPermutations {
public:
    int findSum( int n ) ;
};

void Add(ll &x,ll y){
	x+=y;
	while(x<0) x+=p;
	while(x>=p) x-=p;
}

int SumOverPermutations::findSum(int n) {
    int cur=1;
    f[1][1][1]=1;
    fr(o,2,n){
    	cur^=1;
    	//memset(f[cur],0,sizeof f[cur]);
    	fr(i,1,o){
    		f[cur][i][0]=f[cur][i][1]=0;
    		Add(f[cur][i][0],(n-1)*f[cur^1][i-1][0]%p+n*f[cur^1][i-1][1]%p);
    		Add(f[cur][i][1],(n-2)*(f[cur^1][o-1][0]-f[cur^1][i-1][0])%p);
    		Add(f[cur][i][1],(n-1)*(f[cur^1][o-1][1]-f[cur^1][i-1][1])%p);
    	}
    	if (o==n) continue;
    	fr(i,1,o){
    		Add(f[cur][i][0],f[cur][i-1][0]);
    		Add(f[cur][i][1],f[cur][i-1][1]);
    	}
    }
    ll ans=0;
    fr(i,1,n){
    	Add(ans,f[cur][i][0]*(n-1)%p);
    	Add(ans,f[cur][i][1]*n%p);
    }
    return ans;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值