神经网络训练结果都是1,神经网络训练效果不好

神经网络训练过程中,由于初始权值和阈值的随机性导致每次训练结果可能不同,这使得找到稳定结果变得挑战。虽然BP神经网络在非线性映射和网络结构上具有优势,但也存在学习速度慢、局部极小值和推广能力有限等缺点。为解决这些问题,研究人员致力于改进网络的收敛速度和避免局部极小值。尽管如此,不同的训练结果可能会导致预测值的不一致,尤其是在较少的迭代次数下。一般建议增加训练次数,并寻找满足误差要求的稳定结果。
摘要由CSDN通过智能技术生成

BP神经网络每次训练结果不一样是怎么回事?

因为初始权值和阈值是随机产生的。

神经网络每次结果不同是因为初始化的权值和阈值是随机的,因为每次的结果不一样,才有可能找到比较理想的结果,找到比较好的结果后,用命令save filename net;保存网络,可使预测的结果不会变化,调用时用命令load filename net;   优劣势:BP神经网络无论在网络理论还是在性能方面已比较成熟。

其突出优点就是具有很强的非线性映射能力和柔性的网络结构。网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。但是BP神经网络也存在以下的一些主要缺陷。

①学习速度慢,即使是一个简单的问题,一般也需要几百次甚至上千次的学习才能收敛。②容易陷入局部极小值。③网络层数、神经元个数的选择没有相应的理论指导。④网络推广能力有限。

对于上述问题,目前已经有了许多改进措施,研究最多的就是如何加速网络的收敛速度和尽量避免陷入局部极小值的问题。

谷歌人工智能写作项目:神经网络伪原创

求助:神经网络两次训练的结果不一样

神经网络两次训练的结果不一样,这是因为每次训练的迭代初值不相同(是随机的),所以得到的结果是有差异的写作猫。一般的话,软件开启第一次时,运行得到结果是比较正确的。

例如:用BP神经网络预测某地区人口数第一次

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值