HDU-3829 Cat VS Dog(最大独立集及对题目的分析)

84 篇文章 6 订阅
20 篇文章 1 订阅

题意:

有p个小朋友参观动物园,动物园里面有两种动物,分别为猫和狗。规定一个小朋友喜欢猫就讨厌狗,喜欢狗就讨厌猫。现在管理员要移走一些动物,当然,移走也是有条件的。比如一个小朋友喜欢猫3,讨厌狗4.那么移走了狗4,这个小朋友就会非常开心。同样,如果移走猫3或者没有移走狗4,小朋友就会很不高兴。现在问怎么样才能使开心的小朋友的人数最多。

思路:

先想在狗和猫之间建边,但是不可行,样例就给了提醒,两个小朋友喜欢和讨厌的一模一样,则这么求解会有遗漏。所以可以尝试在小朋友之间进行建边,如果两个小朋友之间存在矛盾则进行建边,即A小朋友喜欢B小朋友讨厌的,或者A小朋友讨厌B小朋友喜欢的。所以就转换成了求解最大独立集值。

将一个点拆成两个点,然后进行求解最大匹配值,小朋友个数p减去匹配数k/2就是答案。


至于为什么拆点建图对,因为所有的矛盾的两个点可以分为两个集合即能构成二分图,如此求解原因解释如下图,和这题异曲同工。所以只有二分图才能有这样的做法,这种做法可以说是二分图的特权。

(图片参考源)

为什么能构成二分图,假设三个点,如下图。


假如A讨厌B喜欢的,如果C和B也矛盾,则C不管喜欢B讨厌的还是C讨厌的B喜欢的,都不会与A造成冲突,同理假设A喜欢B讨厌的,C和B的关系也是如此,因此构成二分图。


代码:

#include <string.h>
#include <cstdio>
using namespace std;
const int maxn = 505;
int G[maxn][maxn];
char s[maxn][2][5];
int match[maxn], vis[maxn];
int n, m, p, ans;
int dfs(int cur)
{
	for(int i = 1; i <= p; ++i)
	{
		if(!G[cur][i] || vis[i]) continue;
		vis[i] = 1;
		if(match[i] == -1 || dfs(match[i]))
		{
			match[i] = cur;
			return 1;
		}
	}
	return 0;
}
int main()
{
	while(~scanf("%d %d %d", &n, &m, &p))
	{
		memset(G, 0, sizeof G); ans = 0;
		memset(match, -1, sizeof match);
		for(int i = 1; i <= p; ++i)
		{
			scanf("%s %s", s[i][0], s[i][1]);
			for(int j = 1; j < i; ++j)
			{
				if(!strcmp(s[i][0], s[j][1]))
				G[i][j] = G[j][i] = 1;
				if(!strcmp(s[i][1], s[j][0]))
				G[i][j] = G[j][i] = 1;
			}
		}
		for(int i = 1; i <= p; ++i)
		{
			memset(vis, 0, sizeof vis);
			if(dfs(i)) ++ans;
		}
		printf("%d\n", p-ans/2);
	}
	return 0;
}
做完并分析完这题对二分图又有进一步的认识了,继续加油!
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值