计算机视觉三大基本任务:分类、检测(定位)、分割(语义和实例)

本文介绍了计算机视觉的三大任务:分类、检测与分割(语义和实例),并探讨了它们之间的区别和联系。分类关注图像的整体内容描述,检测则涉及类别信息与位置定位。语义分割将图像像素级分类,而实例分割同时区分同一物体的不同实例。文章还回顾了卷积神经网络的发展,包括LeNet、AlexNet、VGG、GoogLeNet、ResNet和DenseNet等经典网络架构。
摘要由CSDN通过智能技术生成

前言

刚刚接触计算机视觉时可能会对不同的任务的区分以及网络架构的选择产生迷惑,因此,在此总结了相关的基础知识。在本文中,我们试图回答两个问题:

  1. 不同任务要做的事情是什么,研究范畴是什么?
  2. 不同的任务需要选择什么类型的网络?

分类、检测(定位)、分割(语义和实例)

计算机视觉任务可以分为4大类或3大类,本文根据个人理解,将其分为3大类。任务复杂程度和难度:实例分割>语义分割>物体检测>分类。

首先,先从一张图直观地感受和理解不同任务的区别与联系:

图1. (a) 图像分类;(b)目标检测和定位;(c)语义分割;(d)实例分割
图片来源于知乎张皓: 直观梳理深度学习——计算机视觉四大基本任务

分类任务 (Classification)

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值