动态规划之01背包与完全背包

目录

一、01背包

问题描述:

解题思路:

二、完全背包

问题描述:

解题思路:


一、01背包

问题描述:

有一个背包,背包总的承载重量是 Wkg,有 n 个物品(每个物品只有一件),每个物品的重量不等,并且不可分割。在不超过背包所能装载重量的前提下,如何让背包中物品的总重量最大?

之所以叫做01背包是因为物品要么装(只能装1次)要么不装(0)。

解题思路:

利用动态规划思想,假设dp[i][j]表示前i件物品背包容量为j的情况下所能装的最大重量,v[i] 表示第i件物品的价值,w[i]表示第i件物品重量,则

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i]) (i = 0, 1, ..., n; j = 0, 1, ... , W)

其中dp[i - 1][j]是当前第i件物品不放入背包的总价值,dp[i - 1][j - w[i]] + v[i]是当前物品放入背包的总价值;参考代码为:

dp[0][0] = 0;
for (int i = 1; i <= n; i++) { 
	for (int j = W; j >= w[i]; j--) {
      dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i]);
   }
}

通常二维数组还可以优化为一维数组,即dp[j] = max(dp[j], dp[j - w[i]] + v[i])(i = 0, 1, ..., n; j = 0, 1, ..., W)

但这时要求max函数里的dp[j]必须是前一个状态的值,然后用最大值覆盖dp[j],所以此时内层循环应该逆序

dp[0] = 0;
for (int i = 1; i <= n; i++) { 
	for (int j = W; j >= w[i]; j--) {
      dp[j] = max(dp[j], dp[j - w[i]] + v[i]);
   }
}

二、完全背包

问题描述:

完全背包与01背包的区别在于每件物品不止有一件,而是无数件

解题思路:

对于装单件物品的数量,可以采取贪心算法的思想,最大不超过背包重量限定值w即可,所以每件物品装的最大数量为 W/c[i] 向下取整的值,此时的状态转移方程变为:

dp[i][j] = max(dp[i - 1][j - k * w[i]] + k * v[i]) (i = 0, 1, ..., n; j = 0, 1, ..., W; k = 0, 1, 2, ..., W/c[i])

参考代码为:

dp[0][0] = 0;
int maxtemp = 0;
for (int i = 1; i <= n; i++) { 
	for (int j = w[i]; j <= W; j++) {
      for (int k = 1; k <= W / w[i]; k++) 
          maxtemp = max(maxtemp, dp[i - 1][j - k * w[i]] + v[i]);
      dp[i][j] = max(maxtemp, dp[i][j]);
   }
}

转换为一维数组:dp[j] = max(dp[j], dp[j- w[i]] + v[i]),此时的代码为:

dp[0] = 0;
for (int i = 1; i <= n; i++) { 
	for (int j = w[i]; j <= W; j++) {
      dp[j] = max(dp[j], dp[j - w[i]] + v[i]);
   }
}

此时的内层循环是顺序的,所以dp[j]表示的是当前状态的最大价值,从二维数组的状态转移方程可以看出来,完全背包不需要跟前一个状态的自身值相比,所以是顺序的。

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值